RootEncoder项目在Android 14适配中的关键问题解析
2025-06-29 01:17:54作者:俞予舒Fleming
背景概述
随着Android 14的发布,许多开发者在使用RootEncoder项目进行屏幕流媒体传输时遇到了兼容性问题。本文针对从Android 13升级到Android 14过程中出现的关键技术问题进行深入分析,并提供完整的解决方案。
核心问题分析
1. 权限变更导致的崩溃问题
在Android 14中,Google引入了更严格的媒体投影权限控制机制。当应用尝试使用MediaProjection API时,系统会强制要求特定的前台服务类型声明。错误信息表现为:
_targetSDK=34 requires permissions: all of the permissions allOf=true [android.permission.FOREGROUND_SERVICE_MEDIA_PROJECTION] any of the permissions allOf=false [android.permission.CAPTURE_VIDEO_OUTPUT, android:project_media]_
2. 类文件版本不兼容问题
在尝试升级RootEncoder库版本时,开发者遇到了Java版本兼容性问题:
com/pedro/rtmp/flv/video/ProfileIop.class) class file has wrong version 61.0, should be 55.0
这是由于新版本库使用了Java 17编译,而项目环境可能仍在使用较低版本的Java。
详细解决方案
前台服务配置
针对权限问题,必须在AndroidManifest.xml中正确声明前台服务类型:
<service
android:name=".YourStreamService"
android:foregroundServiceType="mediaProjection|camera|microphone" />
根据实际使用场景选择需要的服务类型组合:
- 仅屏幕录制:mediaProjection
- 包含音频录制:增加microphone
- 包含摄像头:增加camera
Java版本兼容性处理
有两种推荐方案:
- 保持旧版本:继续使用2.1.9版本库,避免Java版本冲突
- 升级项目环境:将项目Java版本升级至17以兼容新版本库
MediaProjection回调注册问题
Android 14新增了强制回调注册要求,错误表现为:
java.lang.IllegalStateException: Must register a callback before starting capture
解决方案需要修改DisplayBase类,在startEncoders方法中添加回调注册:
mediaProjection.registerCallback(new MediaProjection.Callback() {
@Override
public void onStop() {
stopStream();
}
}, handler);
对于无法直接修改库的情况,建议:
- 复制DisplayBase和RtmpDisplay类到项目中
- 修改复制的DisplayBase类,添加回调注册逻辑
- 让RtmpDisplay继承修改后的DisplayBase
最佳实践建议
- 渐进式升级:先解决权限和服务问题,再处理Java版本升级
- 兼容性测试:在Android 14设备上充分测试各功能模块
- 代码隔离:对库的修改尽量通过继承方式实现,便于后续升级
- 权限管理:动态检查并请求所有必要权限,包括新引入的权限类型
总结
Android 14对媒体投影和前台服务的限制更加严格,RootEncoder项目需要相应调整才能保证兼容性。通过正确配置服务声明、处理Java版本兼容性以及添加必要的回调注册,开发者可以顺利完成从Android 13到14的迁移工作。建议开发者在进行此类升级时,仔细阅读Android 14的行为变更文档,特别是关于前台服务和权限管理的变化部分。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Launch4j中文版:Java应用程序打包成EXE的终极解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
deepin linux kernel
C
24
7
React Native鸿蒙化仓库
JavaScript
227
306
Ascend Extension for PyTorch
Python
122
149
暂无简介
Dart
579
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
183
仓颉编译器源码及 cjdb 调试工具。
C++
121
330
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
610
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.18 K