OpenWhisk分布式部署中Invoker健康检查失败问题解析
问题背景
在OpenWhisk分布式部署环境中,用户尝试在两台Linux主机上搭建OpenWhisk集群时遇到了Invoker健康检查失败的问题。具体表现为无法成功调用一个简单的hello动作,同时Invoker日志中显示"runtime manifest is not valid"错误。
环境配置分析
用户的环境配置包括:
- 主节点:192.168.35.5
- Invoker节点:192.168.35.8
- 使用CouchDB作为数据库后端
- 配置了ElasticSearch用于激活记录存储
- 采用分布式部署架构
关键错误现象
在部署过程中,系统表现出以下异常行为:
-
Invoker日志报错:
[ERROR] cannot create test action for invoker health because runtime manifest is not valid -
控制器日志显示:
[ERROR] [StoreUtils] [GET] 'activations' internal error org.apache.http.ConnectionClosedException: Connection closed -
动作调用失败:
error: Unable to invoke action 'hello': There was an internal server error.
根本原因分析
经过深入排查,发现问题根源在于运行时清单(runtime manifest)配置不完整。具体来说:
-
健康检查动作依赖Node.js运行时:OpenWhisk的Invoker健康检查机制默认使用Node.js运行时来创建测试动作。当运行时清单中缺少Node.js配置时,健康检查无法正常进行。
-
用户配置的运行时清单仅包含Python运行时,没有包含Node.js运行时,导致系统无法创建健康检查所需的测试动作。
-
ElasticSearch连接问题是次级错误,主要由于健康检查失败后系统状态异常导致的连锁反应。
解决方案
要解决这个问题,需要完善运行时清单配置:
-
修改runtime.json文件,添加Node.js运行时配置:
{ "runtimes": { "nodejs": [ { "kind": "nodejs:20", "default": true, "image": { "prefix": "openwhisk", "name": "action-nodejs-v20", "tag": "nightly" }, "deprecated": false, "attached": { "attachmentName": "codefile", "attachmentType": "text/plain" } } ], "python": [ // 原有Python配置 ] } } -
更新whisk.properties中的runtimes.manifest属性,确保包含完整的运行时信息。
-
重新部署系统:
ansible-playbook -i environments/$ENVIRONMENT wipe.yml ansible-playbook -i environments/$ENVIRONMENT openwhisk.yml
最佳实践建议
-
运行时清单完整性:在配置OpenWhisk时,确保运行时清单包含系统所需的所有运行时环境,至少应包括Node.js运行时。
-
健康检查机制理解:了解OpenWhisk各组件间的健康检查机制,特别是Invoker依赖于特定运行时来执行健康检查。
-
日志分析优先级:当遇到多个错误时,应首先解决最早出现的根本性错误,其他错误可能是连锁反应。
-
测试验证:部署完成后,建议先测试系统内置动作和健康检查功能,再部署自定义动作。
总结
OpenWhisk分布式环境的配置需要特别注意各组件间的依赖关系。运行时清单的正确配置是系统正常工作的基础,特别是健康检查机制所依赖的运行时环境必须完整。通过完善运行时配置,可以解决因健康检查失败导致的系统异常问题,确保OpenWhisk集群稳定运行。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C084
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00