transformers-benchmarks 的安装和配置教程
项目基础介绍
transformers-benchmarks 是一个开源项目,旨在测量和比较不同GPU上Transformer模型的实际训练性能,以TeraFLOPS(每秒万亿次浮点运算)为单位。该项目可以帮助用户估算训练大规模Transformer模型所需的机器时间。性能数据受到硬件、冷却、CUDA版本、Transformer模型、超参数设置(如批量大小)以及实现方式等多种因素的影响。
项目的主要编程语言
该项目主要使用 Jupyter Notebook 编程语言,其核心代码和文档都包含在.ipynb文件中。
项目使用的关键技术和框架
项目中使用了以下关键技术和框架:
- PyTorch:一个流行的开源机器学习库,用于深度学习应用。
- CUDA:NVIDIA推出的并行计算平台和编程模型,用于GPU加速计算。
项目安装和配置的准备工作
在开始安装和配置transformers-benchmarks之前,请确保您的系统满足了以下要求:
- 操作系统:支持CUDA的Linux操作系统。
- CUDA:安装了NVIDIA的CUDA。
- Python:安装了Python环境,推荐使用Anaconda来管理Python环境和依赖。
- PyTorch:安装了CUDA版本的PyTorch。
项目安装和配置的详细步骤
以下是小白级别的安装和配置步骤:
-
安装NVIDIA驱动和CUDA: 确保您的系统安装了NVIDIA驱动和CUDA。您可以从NVIDIA官方网站下载并安装。
-
安装Anaconda: 访问Anaconda的官方网站,下载并安装Anaconda。安装过程中,请确保添加Anaconda到系统的PATH环境变量。
-
创建新的Anaconda环境: 打开命令行工具,创建一个名为
transformers-benchmarks的新环境,并指定Python版本。conda create -n transformers-benchmarks python=3.8 -
激活Anaconda环境: 激活刚才创建的环境。
conda activate transformers-benchmarks -
安装PyTorch: 在Anaconda环境中,使用conda命令安装与CUDA版本兼容的PyTorch。
conda install pytorch torchvision torchaudio cudatoolkit=xx.x -c pytorch其中
xx.x应替换为您的CUDA版本号。 -
克隆项目仓库: 使用git命令克隆项目仓库到本地。
git clone https://github.com/mli/transformers-benchmarks.git -
启动Docker容器(可选): 如果您希望使用Docker,可以下载并运行包含PyTorch的NVIDIA Docker镜像。
sudo docker run --gpus all -it --rm -p 8888:8888 -v ~/:/workspace \ --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 \ nvcr.io/nvidia/pytorch:22.07-py3运行后,在Docker容器内执行
jupyter notebook命令启动Jupyter Notebook。 -
运行Jupyter Notebook: 在项目目录下,使用以下命令启动Jupyter Notebook。
jupyter notebook使用浏览器打开Jupyter Notebook,开始探索和运行项目中的代码。
以上就是transformers-benchmarks的安装和配置指南,祝您使用愉快!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00