RKNN-Multi-Threaded 项目安装和配置指南
2026-01-20 02:39:30作者:秋泉律Samson
1. 项目基础介绍和主要的编程语言
项目基础介绍
RKNN-Multi-Threaded 是一个基于 Rockchip RKNN 框架的多线程神经网络推理库。该项目的目标是通过充分利用多核处理器的计算能力,优化深度学习模型在嵌入式设备上的执行效率,以达到更快的推理速度和更高的资源利用率。
主要的编程语言
该项目主要使用 Python 进行开发。
2. 项目使用的关键技术和框架
关键技术和框架
- RKNN(Rockchip Neural Network):Rockchip 开发的一种专为 AI 应用设计的神经网络框架,支持多种常见的深度学习模型,并且针对 ARM 架构进行了优化。
- 多线程优化:通过多线程处理,将任务分解到多个线程中,让每个核心可以同时工作,从而显著提高推理速度。
- 设备兼容性:基于 RKNN,该项目对 Rockchip 芯片有良好的兼容性,包括但不限于一系列用于 IoT、智能摄像头和边缘计算的 SoC。
3. 项目安装和配置的准备工作和详细的安装步骤
准备工作
- 硬件要求:确保你有一台支持 Rockchip RKNN 框架的设备,如 RK3588/RK3588S。
- 软件要求:
- Python 3.x
- Git
- Rockchip RKNN Toolkit 2(可以从 Rockchip 官方网站下载)
详细的安装步骤
步骤 1:克隆项目仓库
首先,你需要从 GitHub 上克隆 RKNN-Multi-Threaded 项目到本地。
git clone https://github.com/leafqycc/rknn-multi-threaded.git
cd rknn-multi-threaded
步骤 2:安装依赖
确保你已经安装了 Python 3.x,然后安装项目所需的依赖包。
pip install -r requirements.txt
步骤 3:配置 RKNN Toolkit
确保你已经安装并配置好了 Rockchip RKNN Toolkit 2。你可以从 Rockchip 官方网站下载并按照官方文档进行安装和配置。
步骤 4:运行演示示例
将仓库拉取至本地后,将 Releases 中的演示视频放于项目根目录下,然后运行 main.py 查看演示示例。
python main.py
步骤 5:切换至 root 用户进行性能优化
为了获得更好的性能,建议切换至 root 用户并运行 performance.sh 进行定频操作(约等于开启性能模式)。
sudo su
./performance.sh
步骤 6:查看当前温度与 NPU 占用
运行 rkcat.sh 可以查看当前温度与 NPU 占用情况。
./rkcat.sh
步骤 7:部署应用
根据你的需求,修改 main.py 中的 modelPath、cap 和 TPEs 参数,以适应你的模型和数据源。
# main.py
modelPath = "path/to/your/model"
cap = "path/to/your/video/or/camera"
TPEs = 4 # 根据你的需求设置线程数
步骤 8:自定义推理函数
如果你需要自定义推理函数,可以修改 func.py 中的 myFunc 函数。
# func.py
def myFunc(rknn, img):
# 自定义推理逻辑
pass
结语
通过以上步骤,你应该能够成功安装和配置 RKNN-Multi-Threaded 项目,并开始在你的 Rockchip 设备上进行多线程神经网络推理。如果你有任何问题或需要进一步的帮助,请参考项目的 GitHub 页面或联系社区获取支持。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
306
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882