cc-rs项目在x86-64 Linux上的测试失败问题分析
2025-07-06 17:43:06作者:廉皓灿Ida
cc-rs是Rust生态中一个重要的构建工具库,用于调用C/C++编译器。最近在x86-64 Linux平台上运行测试时出现了失败情况,本文将深入分析这个问题及其解决方案。
问题现象
在x86-64 Linux系统上运行cc-rs的测试套件时,会出现以下错误信息:
cargo:warning=llvm-ar: error: /path/to/cc-rs/target/debug/gcc-test7gypcv/d1fba762150c532c-foo.o: No such file or directory
error: test failed, to rerun pass `--test test`
经过二分查找,确定问题源于一个特定的提交,该提交添加了对Android NDK工具链的支持。
问题根源
问题的核心在于测试环境中的工具链处理逻辑存在缺陷。具体表现为:
- 测试模拟了一个Android交叉编译环境,创建了arm-linux-androideabi-clang和arm-linux-androideabi-ar的模拟工具
- 在Linux平台上,测试没有模拟llvm-ar工具
- 当系统没有安装Android NDK时,构建系统会回退使用llvm-ar而不是预期的arm-linux-androideabi-ar
- 由于llvm-ar是真实工具而非模拟工具,它无法找到测试生成的中间文件,导致失败
技术细节
cc-rs的构建逻辑中有一个关键函数get_base_archiver_variant,它会根据目标平台和可用工具决定使用哪种归档工具。对于Android目标,在没有安装NDK的情况下,它会回退到使用llvm-ar。
测试框架为交叉编译环境创建了模拟的clang和ar工具,但没有为llvm-ar创建模拟工具。当构建系统回退到使用llvm-ar时,这个真实工具无法找到测试生成的中间文件,因为测试环境已经重定向了这些文件的路径。
解决方案
修复方案主要包括两个方面:
- 工具链模拟扩展:在Linux测试环境中也模拟llvm-ar工具,确保无论构建系统选择哪种工具都能正常工作
- 错误处理改进:将测试中的直接退出(exit)改为panic,这样可以获得更清晰的测试失败报告
影响范围
这个问题主要影响:
- 在x86-64 Linux上运行cc-rs测试的开发人员
- 没有安装Android NDK的环境
- 使用多线程运行测试的情况(单线程下错误信息更完整)
最佳实践建议
对于使用cc-rs的开发者:
- 在开发环境中运行测试时,考虑设置RUST_TEST_THREADS=1以获得更完整的错误信息
- 如果需要进行Android交叉编译测试,建议安装Android NDK以获得更真实的测试环境
- 关注cc-rs的更新,及时获取修复版本
这个问题展示了构建工具在跨平台支持中的复杂性,特别是在处理不同工具链和模拟环境时的挑战。通过这个案例,我们可以更好地理解构建系统如何选择工具链以及如何设计健壮的测试环境。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
462
3.44 K
Ascend Extension for PyTorch
Python
269
309
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
190
75
暂无简介
Dart
714
171
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
421
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
119
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692