cc-rs项目在x86-64 Linux上的测试失败问题分析
2025-07-06 17:43:06作者:廉皓灿Ida
cc-rs是Rust生态中一个重要的构建工具库,用于调用C/C++编译器。最近在x86-64 Linux平台上运行测试时出现了失败情况,本文将深入分析这个问题及其解决方案。
问题现象
在x86-64 Linux系统上运行cc-rs的测试套件时,会出现以下错误信息:
cargo:warning=llvm-ar: error: /path/to/cc-rs/target/debug/gcc-test7gypcv/d1fba762150c532c-foo.o: No such file or directory
error: test failed, to rerun pass `--test test`
经过二分查找,确定问题源于一个特定的提交,该提交添加了对Android NDK工具链的支持。
问题根源
问题的核心在于测试环境中的工具链处理逻辑存在缺陷。具体表现为:
- 测试模拟了一个Android交叉编译环境,创建了arm-linux-androideabi-clang和arm-linux-androideabi-ar的模拟工具
- 在Linux平台上,测试没有模拟llvm-ar工具
- 当系统没有安装Android NDK时,构建系统会回退使用llvm-ar而不是预期的arm-linux-androideabi-ar
- 由于llvm-ar是真实工具而非模拟工具,它无法找到测试生成的中间文件,导致失败
技术细节
cc-rs的构建逻辑中有一个关键函数get_base_archiver_variant,它会根据目标平台和可用工具决定使用哪种归档工具。对于Android目标,在没有安装NDK的情况下,它会回退到使用llvm-ar。
测试框架为交叉编译环境创建了模拟的clang和ar工具,但没有为llvm-ar创建模拟工具。当构建系统回退到使用llvm-ar时,这个真实工具无法找到测试生成的中间文件,因为测试环境已经重定向了这些文件的路径。
解决方案
修复方案主要包括两个方面:
- 工具链模拟扩展:在Linux测试环境中也模拟llvm-ar工具,确保无论构建系统选择哪种工具都能正常工作
- 错误处理改进:将测试中的直接退出(exit)改为panic,这样可以获得更清晰的测试失败报告
影响范围
这个问题主要影响:
- 在x86-64 Linux上运行cc-rs测试的开发人员
- 没有安装Android NDK的环境
- 使用多线程运行测试的情况(单线程下错误信息更完整)
最佳实践建议
对于使用cc-rs的开发者:
- 在开发环境中运行测试时,考虑设置RUST_TEST_THREADS=1以获得更完整的错误信息
- 如果需要进行Android交叉编译测试,建议安装Android NDK以获得更真实的测试环境
- 关注cc-rs的更新,及时获取修复版本
这个问题展示了构建工具在跨平台支持中的复杂性,特别是在处理不同工具链和模拟环境时的挑战。通过这个案例,我们可以更好地理解构建系统如何选择工具链以及如何设计健壮的测试环境。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134