Apache Doris 数据合并(Compaction)机制深度解析与调优指南
2025-06-27 04:00:40作者:伍希望
概述
Apache Doris 采用类似 LSM-Tree 的结构存储数据,通过后台的数据合并(Compaction)机制持续将小文件合并为大的有序文件。合理调整合并策略可以显著提升数据导入和查询效率。本文将全面解析 Doris 的各种合并机制及其适用场景。
核心合并机制详解
垂直合并(Vertical Compaction)
技术背景: 传统合并算法在处理宽表场景时存在内存消耗大、执行效率低的问题。垂直合并是 Doris 1.2.2 引入的创新算法,专为大规模宽表场景优化。
实现原理:
- 将传统的按行合并改为按列组(Column Group)合并
- 每次合并的粒度变为列组而非整行
- 显著减少单次合并涉及的数据量
性能表现:
- 内存消耗仅为传统算法的 1/10
- 合并速度提升约 15%
配置参数:
enable_vertical_compaction = true # 启用垂直合并
vertical_compaction_num_columns_per_group = 5 # 每组列数,默认5列性能最佳
vertical_compaction_max_segment_size = 268435456 # 合并后文件大小(字节)
段合并(Segment Compaction)
设计目标: 解决大规模数据导入时产生过多小文件的问题,避免出现 OLAP_ERR_TOO_MANY_SEGMENTS(-238)错误。
技术特点:
- 在数据导入过程中并行执行合并
- 不会增加导入总时长
- 资源消耗均匀分布在整个导入过程
- 为后续查询和标准合并提供性能优势
配置建议:
enable_segcompaction = true # 启用段合并
segcompaction_batch_size = 10 # 合并间隔(每10个段触发一次)
适用场景:
- 大数据量导入频繁出现 -238 错误
- 导入产生过多小文件(低基数字段或内存限制导致)
- 导入后需要立即查询
- 导入后标准合并压力过大
不适用场景: 当导入操作本身已耗尽内存资源时,不建议启用
单副本合并(Single Replica Compaction)
优化原理:
- 传统方式:每个副本独立执行合并,消耗 N 倍资源
- 单副本合并:仅主副本执行合并,其他副本同步结果
- 节省 N-1 倍 CPU 资源(N 为副本数)
配置方式:
-- 建表时指定
CREATE TABLE ... PROPERTIES ("enable_single_replica_compaction" = "true");
-- 修改已有表
ALTER TABLE table_name SET("enable_single_replica_compaction" = "true");
合并策略选择
基于大小的策略(默认)
"compaction_policy" = "size_based"
适用大多数通用场景,按文件大小自动触发合并。
时间序列策略
"compaction_policy" = "time_series"
专为日志、时序数据优化,利用时间局部性原理:
- 合并相邻时间段的小文件
- 每个文件仅参与一次合并
- 显著降低写放大问题
触发条件:
- 未合并文件总大小 >
time_series_compaction_goal_size_mbytes
(默认1GB) - 未合并文件数 >
time_series_compaction_file_count_threshold
(默认2000) - 距上次合并时间 >
time_series_compaction_time_threshold_seconds
(默认1小时)
动态调整:
ALTER TABLE table_name SET("time_series_compaction_goal_size_mbytes"="2048");
并发控制与资源管理
通过 BE 配置控制合并资源消耗:
max_base_compaction_threads = 4 # 基础合并线程数
max_cumu_compaction_threads = -1 # 累积合并线程数(-1表示每磁盘1线程)
max_single_replica_compaction_threads = 10 # 单副本合并传输线程数
最佳实践建议
- 宽表场景:优先启用垂直合并,列组大小保持默认5列
- 批量导入:预估会产生大量小文件时启用段合并
- 多副本集群:启用单副本合并节省资源
- 时序数据:选择时间序列策略并适当调整阈值
- 资源紧张时:降低合并并发度,优先保证导入和查询性能
通过合理配置这些合并机制,可以显著提升 Doris 集群的整体性能和稳定性。建议根据实际业务特点进行针对性调优。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程视频测验中的Tab键导航问题解析5 freeCodeCamp课程中屏幕放大器知识点优化分析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
28