Apache Doris 数据合并(Compaction)机制深度解析与调优指南
2025-06-27 19:21:14作者:伍希望
概述
Apache Doris 采用类似 LSM-Tree 的结构存储数据,通过后台的数据合并(Compaction)机制持续将小文件合并为大的有序文件。合理调整合并策略可以显著提升数据导入和查询效率。本文将全面解析 Doris 的各种合并机制及其适用场景。
核心合并机制详解
垂直合并(Vertical Compaction)
技术背景: 传统合并算法在处理宽表场景时存在内存消耗大、执行效率低的问题。垂直合并是 Doris 1.2.2 引入的创新算法,专为大规模宽表场景优化。
实现原理:
- 将传统的按行合并改为按列组(Column Group)合并
- 每次合并的粒度变为列组而非整行
- 显著减少单次合并涉及的数据量
性能表现:
- 内存消耗仅为传统算法的 1/10
- 合并速度提升约 15%
配置参数:
enable_vertical_compaction = true # 启用垂直合并
vertical_compaction_num_columns_per_group = 5 # 每组列数,默认5列性能最佳
vertical_compaction_max_segment_size = 268435456 # 合并后文件大小(字节)
段合并(Segment Compaction)
设计目标: 解决大规模数据导入时产生过多小文件的问题,避免出现 OLAP_ERR_TOO_MANY_SEGMENTS(-238)错误。
技术特点:
- 在数据导入过程中并行执行合并
- 不会增加导入总时长
- 资源消耗均匀分布在整个导入过程
- 为后续查询和标准合并提供性能优势
配置建议:
enable_segcompaction = true # 启用段合并
segcompaction_batch_size = 10 # 合并间隔(每10个段触发一次)
适用场景:
- 大数据量导入频繁出现 -238 错误
- 导入产生过多小文件(低基数字段或内存限制导致)
- 导入后需要立即查询
- 导入后标准合并压力过大
不适用场景: 当导入操作本身已耗尽内存资源时,不建议启用
单副本合并(Single Replica Compaction)
优化原理:
- 传统方式:每个副本独立执行合并,消耗 N 倍资源
- 单副本合并:仅主副本执行合并,其他副本同步结果
- 节省 N-1 倍 CPU 资源(N 为副本数)
配置方式:
-- 建表时指定
CREATE TABLE ... PROPERTIES ("enable_single_replica_compaction" = "true");
-- 修改已有表
ALTER TABLE table_name SET("enable_single_replica_compaction" = "true");
合并策略选择
基于大小的策略(默认)
"compaction_policy" = "size_based"
适用大多数通用场景,按文件大小自动触发合并。
时间序列策略
"compaction_policy" = "time_series"
专为日志、时序数据优化,利用时间局部性原理:
- 合并相邻时间段的小文件
- 每个文件仅参与一次合并
- 显著降低写放大问题
触发条件:
- 未合并文件总大小 >
time_series_compaction_goal_size_mbytes
(默认1GB) - 未合并文件数 >
time_series_compaction_file_count_threshold
(默认2000) - 距上次合并时间 >
time_series_compaction_time_threshold_seconds
(默认1小时)
动态调整:
ALTER TABLE table_name SET("time_series_compaction_goal_size_mbytes"="2048");
并发控制与资源管理
通过 BE 配置控制合并资源消耗:
max_base_compaction_threads = 4 # 基础合并线程数
max_cumu_compaction_threads = -1 # 累积合并线程数(-1表示每磁盘1线程)
max_single_replica_compaction_threads = 10 # 单副本合并传输线程数
最佳实践建议
- 宽表场景:优先启用垂直合并,列组大小保持默认5列
- 批量导入:预估会产生大量小文件时启用段合并
- 多副本集群:启用单副本合并节省资源
- 时序数据:选择时间序列策略并适当调整阈值
- 资源紧张时:降低合并并发度,优先保证导入和查询性能
通过合理配置这些合并机制,可以显著提升 Doris 集群的整体性能和稳定性。建议根据实际业务特点进行针对性调优。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~046CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
863
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K