推荐使用:GitLab 项目导出工具
项目介绍
gitlab-project-export 是一个简单易用的 Python 项目,专门用于通过 GitLab API 的“导出项目”功能来导出 GitLab 项目。该项目主要用于将 GitLab.com 上的项目远程备份到私有存储服务器,确保数据的安全性和可恢复性。
项目技术分析
技术栈
- 编程语言:Python 3
- 依赖管理:pip
- 配置文件:YAML
- API 调用:GitLab API
兼容性
自 2020 年 5 月起,该项目已不再支持 Python 2,仅兼容 Python 3。
安装与部署
项目支持多种安装方式,包括通过 pip 直接安装、从 GitHub 克隆项目手动安装,或在不安装到环境中的情况下使用。
使用方式
项目提供了详细的命令行参数,支持配置文件、调试模式、强制模式等功能,方便用户根据需求进行灵活配置。
项目及技术应用场景
远程备份
适用于需要定期将 GitLab 项目备份到私有存储服务器的场景,确保数据的安全性和可恢复性。
项目迁移
支持将项目从一个 GitLab 实例导出并导入到另一个实例,适用于项目迁移或数据中心迁移的场景。
自动化备份
通过配置 cron 任务,可以实现定期自动备份,减少人工操作,提高备份效率。
项目特点
简单易用
项目提供了简单的命令行接口和配置文件,用户无需深入了解技术细节即可快速上手。
灵活配置
支持多种安装和使用方式,用户可以根据自己的环境和需求进行灵活配置。
自动化支持
通过配置 cron 任务,可以实现自动化备份,减少人工操作,提高备份效率。
兼容性强
虽然不再支持 Python 2,但与 Python 3 的兼容性确保了项目的稳定性和可靠性。
安全可靠
通过 GitLab API 进行项目导出,确保数据的安全性和完整性,同时支持强制模式,覆盖已有备份文件,确保数据的最新性。
结语
gitlab-project-export 是一个功能强大且易于使用的 GitLab 项目导出工具,无论是用于远程备份、项目迁移还是自动化备份,都能满足您的需求。如果您正在寻找一个可靠的 GitLab 项目备份解决方案,不妨试试 gitlab-project-export,相信它会成为您项目管理中的得力助手。
安装命令:
pip install gitlab-project-export
或
pip install git+https://github.com/rvojcik/gitlab-project-export
使用示例:
./gitlab-project-export.py -c /path/to/config.yml
配置文件示例:
gitlab:
access:
gitlab_url: "https://gitlab.com"
token: "MY_PERSONAL_SECRET_TOKEN"
projects:
- rvojcik/example-project
backup:
destination: "/data/backup"
project_dirs: True
backup_name: "gitlab-com-{PROJECT_NAME}-{TIME}.tar.gz"
backup_time_format: "%Y%m%d"
retention_period: 3
自动化备份示例:
0 1 * * * root /path/to/cloned-repo/gitlab-project-export.py -c /etc/gitlab-export/config.yml
项目迁移示例:
./gitlab-project-export.py -c ./config1.yml -d
./gitlab-project-import.py -c ./config2.yml -f ./gitlab-com-rvojcik-project1-20181224.tar.gz -p "rvojcik/project1"
希望 gitlab-project-export 能为您带来便利,让您的项目管理更加高效和安全!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00