OpenDerisk项目快速入门指南:从环境搭建到模型部署
2025-06-01 15:29:58作者:廉皓灿Ida
项目概述
OpenDerisk是一个开源的风险评估与分析平台,它整合了多种大语言模型(LLM)和嵌入模型,为用户提供强大的风险识别和分析能力。本文将详细介绍如何快速搭建OpenDerisk环境并部署不同类型的模型。
环境准备
系统要求
在开始前,请确保您的系统满足以下基本要求:
- 操作系统:支持Linux、macOS和Windows(建议使用Linux)
- Python版本:3.8或更高
- 硬件配置:
- CPU:建议4核以上
- 内存:至少8GB(本地模型部署需要更大内存)
- GPU(可选):如需本地运行大模型,建议配备NVIDIA显卡
获取项目代码
通过以下命令获取项目源代码:
git clone https://github.com/derisk-ai/derisk.git
安装UV工具
UV是一个高效的Python包管理工具,OpenDerisk推荐使用它来管理项目依赖。以下是几种安装方式:
通过脚本安装(macOS/Linux)
curl -LsSf https://astral.sh/uv/install.sh | sh
通过pipx安装
python -m pip install --upgrade pip
python -m pip install --upgrade pipx
python -m pipx ensurepath
pipx install uv --global
安装完成后,验证安装是否成功:
uv --version
模型部署方案
OpenDerisk支持多种模型部署方式,用户可根据自身需求选择:
1. 代理模式(DeepSeek/OpenAI)
依赖安装
uv sync --all-packages \
--extra "base" \
--extra "proxy_openai" \
--extra "rag" \
--extra "storage_chromadb"
配置文件设置
编辑configs/derisk-proxy-deepseek.toml文件:
[models]
[[models.llms]]
name = "deepseek-reasoner"
provider = "proxy/deepseek"
api_key = "your-deepseek-api-key"
[[models.embeddings]]
name = "BAAI/bge-large-zh-v1.5"
provider = "hf"
path = "/data/models/bge-large-zh-v1.5"
启动服务
uv run derisk start webserver --config configs/derisk-proxy-deepseek.toml
2. 本地模型(QwQ-32B)
依赖安装
uv sync --all-packages \
--extra "base" \
--extra "cuda121" \
--extra "hf" \
--extra "rag" \
--extra "storage_chromadb" \
--extra "quant_bnb"
配置文件设置
编辑configs/derisk-local-qwen.toml文件:
[models]
[[models.llms]]
name = "Qwen/QwQ-32B"
provider = "hf"
[[models.embeddings]]
name = "BAAI/bge-large-zh-v1.5"
provider = "hf"
启动服务
uv run derisk start webserver --config configs/derisk-local-qwen.toml
3. VLLM加速模式
依赖安装
uv sync --all-packages \
--extra "base" \
--extra "hf" \
--extra "cuda121" \
--extra "vllm" \
--extra "rag" \
--extra "storage_chromadb" \
--extra "quant_bnb"
配置文件设置
编辑configs/derisk-local-vllm.toml文件:
[models]
[[models.llms]]
name = "Qwen/QwQ-32B"
provider = "vllm"
[[models.embeddings]]
name = "BAAI/bge-large-zh-v1.5"
provider = "hf"
启动服务
uv run derisk start webserver --config configs/derisk-local-vllm.toml
访问Web界面
服务启动后,可通过浏览器访问:
http://localhost:7777
可选:独立运行前端
如需单独开发或运行前端:
cd web && npm install
cp .env.template .env
# 在.env文件中设置API_BASE_URL为后端地址,通常是http://localhost:7777
npm run dev
访问前端界面:
http://localhost:3000
常见问题解决
-
依赖安装缓慢: 在某些地区,可在命令后添加
--index-url=https://pypi.tuna.tsinghua.edu.cn/simple使用镜像源 -
模型下载失败:
- 确保网络连接正常
- 对于Hugging Face模型,可先手动下载到本地,然后在配置文件中指定路径
-
GPU相关问题:
- 确保已安装正确版本的CUDA驱动
- 检查PyTorch是否支持您的GPU型号
通过以上步骤,您应该能够成功部署OpenDerisk平台并开始使用其风险评估功能。根据您的硬件条件和需求,选择合适的部署方式可以获得最佳的性能体验。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1