MNN-LLM项目中Token生成速度的统计方法解析
2025-07-10 21:55:14作者:霍妲思
在MNN-LLM项目中,统计模型生成token的速度是评估模型性能的重要指标。本文将详细介绍如何获取和解读这些性能数据。
Token生成速度的统计原理
MNN-LLM项目通过C++代码实现了对token生成速度的精确统计。核心统计逻辑位于Llm::print_speed()函数中,该函数计算并输出了多个关键性能指标:
- 时间统计:分别统计了prefill(预填充)阶段和decode(解码)阶段的耗时,单位精确到微秒
- Token数量统计:记录了输入的prompt token数量和生成的output token数量
- 速度计算:基于时间和token数量,计算出各种速度指标
关键性能指标
项目提供了以下几类性能指标:
- 总token数:prompt token数与生成token数之和
- 各阶段耗时:
- 预填充时间(prefill time)
- 解码时间(decode time)
- 总时间(total time)
- 生成速度:
- 预填充速度(prefill speed):prompt token数/预填充时间
- 解码速度(decode speed):生成token数/解码时间
- 总速度(total speed):总token数/总时间
- 聊天速度(chat speed):生成token数/总时间
实际测试方法
在Android设备上,可以通过ADB命令直接运行demo程序获取这些性能数据:
- 确保设备已连接并启用ADB调试
- 执行以下命令:
adb shell "cd /data/local/tmp && export LD_LIBRARY_PATH=. && ./cli_demo ./Qwen2-1.5B-Instruct-MNN/config.json"
- 程序运行后会输出详细的性能统计信息
性能数据解读
输出的性能数据格式如下:
#################################
total tokens num = 85
prompt tokens num = 32
output tokens num = 53
total time = 4.21 s
prefill time = 1.05 s
decode time = 3.16 s
total speed = 20.19 tok/s
prefill speed = 30.48 tok/s
decode speed = 16.77 tok/s
chat speed = 12.59 tok/s
##################################
- prefill speed:表示模型处理输入prompt的速度,通常较高
- decode speed:表示模型生成新token的速度,是评估生成性能的关键指标
- chat speed:从用户角度看,从输入到获得回复的整体速度
性能影响因素
不同设备和模型参数会影响这些性能指标:
- 设备硬件:CPU/GPU性能、内存带宽等
- 模型参数:模型大小、量化精度等
- 输入输出长度:prompt长度和生成文本长度
- 系统环境:后台进程、温度调节等
通过分析这些性能数据,开发者可以优化模型部署,选择最适合特定硬件配置的模型参数,从而在实际应用中达到最佳性能表现。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0123
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
491
3.62 K
Ascend Extension for PyTorch
Python
300
332
暂无简介
Dart
740
178
React Native鸿蒙化仓库
JavaScript
297
346
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
866
473
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
289
123
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言测试用例。
Cangjie
43
870