OmniFusion 的安装和配置教程
2025-05-25 09:14:35作者:何举烈Damon
项目基础介绍和主要编程语言
OmniFusion 是一个高级的多模态 AI 模型,旨在扩展传统语言处理系统的功能,通过整合图像、音频、3D 和视频内容等多种数据模态。该项目使用的主要编程语言是 Python。
项目使用的关键技术和框架
OmniFusion 使用的关键技术和框架包括:
- Transformer 架构:OmniFusion 的核心是 Mistral-7B,这是一个基于 Transformer 的语言模型。
- CLIP-ViT-L 和 Dino V2 编码器:OmniFusion 使用 CLIP-ViT-L 和 Dino V2 作为视觉编码器,以实现高效的图像信息传递。
- Adapter 机制:OmniFusion 使用 Adapter 机制将视觉嵌入映射到文本嵌入,以便语言模型能够理解和处理多模态数据。
- Huggingface Transformers 库:OmniFusion 使用 Huggingface Transformers 库来实现模型训练和推理。
项目安装和配置的准备工作和详细的安装步骤
准备工作
- 安装 Python (建议使用 Python 3.7 或更高版本)。
- 安装 PyTorch (建议使用 PyTorch 1.8 或更高版本)。
- 安装 Huggingface Transformers 库。
- 准备训练和推理所需的硬件设备,例如 GPU。
安装步骤
-
安装 PyTorch
您可以使用以下命令安装 PyTorch:
pip install torch torchvision torchaudio -
安装 Huggingface Transformers 库
您可以使用以下命令安装 Huggingface Transformers 库:
pip install transformers -
下载 OmniFusion 模型和权重
您可以从 Huggingface 模型库下载 OmniFusion 模型和权重:
from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "AIRI-Institute/OmniFusion" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) -
下载 CLIP-ViT-L 和 Dino V2 编码器
您可以使用以下命令下载 CLIP-ViT-L 和 Dino V2 编码器:
!wget https://github.com/openai/CLIP/releases/download/v1.0.0/clip-vit-large-patch14-336.pt -O clip-vit-large-patch14-336.pt !wget https://github.com/facebookresearch/dino/releases/download/v2.0/dino_vitbase16_pretrain.pth -O dino_vitbase16_pretrain.pth -
加载模型和编码器
您可以使用以下代码加载 OmniFusion 模型和 CLIP-ViT-L 编码器:
from models import CLIPVisionTower clip = CLIPVisionTower("openai/clip-vit-large-patch14-336") clip.load_model() clip.to(device="cuda:0", dtype=torch.bfloat16) -
生成推理结果
您可以使用以下代码生成推理结果:
def gen_answer(model, tokenizer, clip, query, image=None): # ... (省略代码) img_url = "https://i.pinimg.com/originals/32/c7/81/32c78115cb47fd4825e6907a83b7afff.jpg" question = "What is the sky color on this image?" img = Image.open(urlopen(img_url)) answer = gen_answer(model, tokenizer, clip, question, img) print(question) print(answer)
请注意,以上代码仅供参考,您可能需要根据实际情况进行调整。如果您遇到任何问题,请参考 OmniFusion GitHub 仓库中的文档和示例代码。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
238
2.36 K
仓颉编程语言运行时与标准库。
Cangjie
122
96
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
85
React Native鸿蒙化仓库
JavaScript
216
291
Ascend Extension for PyTorch
Python
77
110
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
998
589
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
589
115
LLVM 项目是一个模块化、可复用的编译器及工具链技术的集合。此fork用于添加仓颉编译器的功能,并支持仓颉编译器项目。
C++
32
26