OmniFusion 的安装和配置教程
2025-05-25 07:46:35作者:何举烈Damon
项目基础介绍和主要编程语言
OmniFusion 是一个高级的多模态 AI 模型,旨在扩展传统语言处理系统的功能,通过整合图像、音频、3D 和视频内容等多种数据模态。该项目使用的主要编程语言是 Python。
项目使用的关键技术和框架
OmniFusion 使用的关键技术和框架包括:
- Transformer 架构:OmniFusion 的核心是 Mistral-7B,这是一个基于 Transformer 的语言模型。
- CLIP-ViT-L 和 Dino V2 编码器:OmniFusion 使用 CLIP-ViT-L 和 Dino V2 作为视觉编码器,以实现高效的图像信息传递。
- Adapter 机制:OmniFusion 使用 Adapter 机制将视觉嵌入映射到文本嵌入,以便语言模型能够理解和处理多模态数据。
- Huggingface Transformers 库:OmniFusion 使用 Huggingface Transformers 库来实现模型训练和推理。
项目安装和配置的准备工作和详细的安装步骤
准备工作
- 安装 Python (建议使用 Python 3.7 或更高版本)。
- 安装 PyTorch (建议使用 PyTorch 1.8 或更高版本)。
- 安装 Huggingface Transformers 库。
- 准备训练和推理所需的硬件设备,例如 GPU。
安装步骤
-
安装 PyTorch
您可以使用以下命令安装 PyTorch:
pip install torch torchvision torchaudio -
安装 Huggingface Transformers 库
您可以使用以下命令安装 Huggingface Transformers 库:
pip install transformers -
下载 OmniFusion 模型和权重
您可以从 Huggingface 模型库下载 OmniFusion 模型和权重:
from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "AIRI-Institute/OmniFusion" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) -
下载 CLIP-ViT-L 和 Dino V2 编码器
您可以使用以下命令下载 CLIP-ViT-L 和 Dino V2 编码器:
!wget https://github.com/openai/CLIP/releases/download/v1.0.0/clip-vit-large-patch14-336.pt -O clip-vit-large-patch14-336.pt !wget https://github.com/facebookresearch/dino/releases/download/v2.0/dino_vitbase16_pretrain.pth -O dino_vitbase16_pretrain.pth -
加载模型和编码器
您可以使用以下代码加载 OmniFusion 模型和 CLIP-ViT-L 编码器:
from models import CLIPVisionTower clip = CLIPVisionTower("openai/clip-vit-large-patch14-336") clip.load_model() clip.to(device="cuda:0", dtype=torch.bfloat16) -
生成推理结果
您可以使用以下代码生成推理结果:
def gen_answer(model, tokenizer, clip, query, image=None): # ... (省略代码) img_url = "https://i.pinimg.com/originals/32/c7/81/32c78115cb47fd4825e6907a83b7afff.jpg" question = "What is the sky color on this image?" img = Image.open(urlopen(img_url)) answer = gen_answer(model, tokenizer, clip, question, img) print(question) print(answer)
请注意,以上代码仅供参考,您可能需要根据实际情况进行调整。如果您遇到任何问题,请参考 OmniFusion GitHub 仓库中的文档和示例代码。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
140
170
暂无简介
Dart
598
130
React Native鸿蒙化仓库
JavaScript
235
309
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
634
232
仓颉编译器源码及 cjdb 调试工具。
C++
123
731
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
198
74
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460