OmniFusion 的安装和配置教程
2025-05-25 01:11:22作者:何举烈Damon
项目基础介绍和主要编程语言
OmniFusion 是一个高级的多模态 AI 模型,旨在扩展传统语言处理系统的功能,通过整合图像、音频、3D 和视频内容等多种数据模态。该项目使用的主要编程语言是 Python。
项目使用的关键技术和框架
OmniFusion 使用的关键技术和框架包括:
- Transformer 架构:OmniFusion 的核心是 Mistral-7B,这是一个基于 Transformer 的语言模型。
- CLIP-ViT-L 和 Dino V2 编码器:OmniFusion 使用 CLIP-ViT-L 和 Dino V2 作为视觉编码器,以实现高效的图像信息传递。
- Adapter 机制:OmniFusion 使用 Adapter 机制将视觉嵌入映射到文本嵌入,以便语言模型能够理解和处理多模态数据。
- Huggingface Transformers 库:OmniFusion 使用 Huggingface Transformers 库来实现模型训练和推理。
项目安装和配置的准备工作和详细的安装步骤
准备工作
- 安装 Python (建议使用 Python 3.7 或更高版本)。
- 安装 PyTorch (建议使用 PyTorch 1.8 或更高版本)。
- 安装 Huggingface Transformers 库。
- 准备训练和推理所需的硬件设备,例如 GPU。
安装步骤
-
安装 PyTorch
您可以使用以下命令安装 PyTorch:
pip install torch torchvision torchaudio -
安装 Huggingface Transformers 库
您可以使用以下命令安装 Huggingface Transformers 库:
pip install transformers -
下载 OmniFusion 模型和权重
您可以从 Huggingface 模型库下载 OmniFusion 模型和权重:
from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "AIRI-Institute/OmniFusion" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) -
下载 CLIP-ViT-L 和 Dino V2 编码器
您可以使用以下命令下载 CLIP-ViT-L 和 Dino V2 编码器:
!wget https://github.com/openai/CLIP/releases/download/v1.0.0/clip-vit-large-patch14-336.pt -O clip-vit-large-patch14-336.pt !wget https://github.com/facebookresearch/dino/releases/download/v2.0/dino_vitbase16_pretrain.pth -O dino_vitbase16_pretrain.pth -
加载模型和编码器
您可以使用以下代码加载 OmniFusion 模型和 CLIP-ViT-L 编码器:
from models import CLIPVisionTower clip = CLIPVisionTower("openai/clip-vit-large-patch14-336") clip.load_model() clip.to(device="cuda:0", dtype=torch.bfloat16) -
生成推理结果
您可以使用以下代码生成推理结果:
def gen_answer(model, tokenizer, clip, query, image=None): # ... (省略代码) img_url = "https://i.pinimg.com/originals/32/c7/81/32c78115cb47fd4825e6907a83b7afff.jpg" question = "What is the sky color on this image?" img = Image.open(urlopen(img_url)) answer = gen_answer(model, tokenizer, clip, question, img) print(question) print(answer)
请注意,以上代码仅供参考,您可能需要根据实际情况进行调整。如果您遇到任何问题,请参考 OmniFusion GitHub 仓库中的文档和示例代码。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
115
仓颉编译器源码及 cjdb 调试工具。
C++
138
869