OmniFusion 的安装和配置教程
2025-05-25 16:04:27作者:何举烈Damon
项目基础介绍和主要编程语言
OmniFusion 是一个高级的多模态 AI 模型,旨在扩展传统语言处理系统的功能,通过整合图像、音频、3D 和视频内容等多种数据模态。该项目使用的主要编程语言是 Python。
项目使用的关键技术和框架
OmniFusion 使用的关键技术和框架包括:
- Transformer 架构:OmniFusion 的核心是 Mistral-7B,这是一个基于 Transformer 的语言模型。
- CLIP-ViT-L 和 Dino V2 编码器:OmniFusion 使用 CLIP-ViT-L 和 Dino V2 作为视觉编码器,以实现高效的图像信息传递。
- Adapter 机制:OmniFusion 使用 Adapter 机制将视觉嵌入映射到文本嵌入,以便语言模型能够理解和处理多模态数据。
- Huggingface Transformers 库:OmniFusion 使用 Huggingface Transformers 库来实现模型训练和推理。
项目安装和配置的准备工作和详细的安装步骤
准备工作
- 安装 Python (建议使用 Python 3.7 或更高版本)。
- 安装 PyTorch (建议使用 PyTorch 1.8 或更高版本)。
- 安装 Huggingface Transformers 库。
- 准备训练和推理所需的硬件设备,例如 GPU。
安装步骤
-
安装 PyTorch
您可以使用以下命令安装 PyTorch:
pip install torch torchvision torchaudio -
安装 Huggingface Transformers 库
您可以使用以下命令安装 Huggingface Transformers 库:
pip install transformers -
下载 OmniFusion 模型和权重
您可以从 Huggingface 模型库下载 OmniFusion 模型和权重:
from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "AIRI-Institute/OmniFusion" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) -
下载 CLIP-ViT-L 和 Dino V2 编码器
您可以使用以下命令下载 CLIP-ViT-L 和 Dino V2 编码器:
!wget https://github.com/openai/CLIP/releases/download/v1.0.0/clip-vit-large-patch14-336.pt -O clip-vit-large-patch14-336.pt !wget https://github.com/facebookresearch/dino/releases/download/v2.0/dino_vitbase16_pretrain.pth -O dino_vitbase16_pretrain.pth -
加载模型和编码器
您可以使用以下代码加载 OmniFusion 模型和 CLIP-ViT-L 编码器:
from models import CLIPVisionTower clip = CLIPVisionTower("openai/clip-vit-large-patch14-336") clip.load_model() clip.to(device="cuda:0", dtype=torch.bfloat16) -
生成推理结果
您可以使用以下代码生成推理结果:
def gen_answer(model, tokenizer, clip, query, image=None): # ... (省略代码) img_url = "https://i.pinimg.com/originals/32/c7/81/32c78115cb47fd4825e6907a83b7afff.jpg" question = "What is the sky color on this image?" img = Image.open(urlopen(img_url)) answer = gen_answer(model, tokenizer, clip, question, img) print(question) print(answer)
请注意,以上代码仅供参考,您可能需要根据实际情况进行调整。如果您遇到任何问题,请参考 OmniFusion GitHub 仓库中的文档和示例代码。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0113
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
487
3.61 K
Ascend Extension for PyTorch
Python
298
332
暂无简介
Dart
738
177
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
270
113
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
865
467
仓颉编译器源码及 cjdb 调试工具。
C++
149
880
React Native鸿蒙化仓库
JavaScript
296
343
Dora SSR 是一款跨平台的游戏引擎,提供前沿或是具有探索性的游戏开发功能。它内置了Web IDE,提供了可以轻轻松松通过浏览器访问的快捷游戏开发环境,特别适合于在新兴市场如国产游戏掌机和其它移动电子设备上直接进行游戏开发和编程学习。
C++
52
7
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20