TTS项目中MultibandMelGAN训练时的目标损失错误分析
2025-05-02 07:58:18作者:伍希望
问题背景
在使用coqui-ai/TTS项目训练MultibandMelGAN模型时,开发者遇到了一个关于目标损失计算的错误。该问题主要出现在使用thorsten_de_v03数据集进行训练时,当训练周期(epoch)结束后,系统会抛出"ValueError: Target loss not found in the keep_avg_target"的错误。
错误现象分析
训练过程中,系统首先会发出一个警告:"UserWarning: Detected call of lr_scheduler.step()
before optimizer.step()
",这表明学习率调度器的步进发生在优化器更新之前,这可能会影响训练效果。随后,在评估阶段结束后,系统会抛出目标损失未找到的错误。
根本原因
经过深入分析,发现该问题的根源在于模型配置中的目标损失设置与实际训练过程中产生的损失不匹配。具体表现为:
- 默认配置中,
target_loss
被设置为'loss_0',这对应于判别器(discriminator)的损失 - 但在MultibandMelGANConfig和UnivnetConfig中,
steps_to_start_discriminator
的默认值为200000 - 这意味着在训练初期,判别器尚未开始工作,因此不会产生'loss_0'损失值
- 当系统尝试访问这个不存在的损失值时,就会抛出目标损失未找到的错误
解决方案
针对这一问题,可以通过修改模型配置来解决:
- 在MultibandMelGANConfig或UnivnetConfig中,将
target_loss
设置为'loss_1' - 'loss_1'对应于生成器(generator)的损失,在训练初期就会产生
- 这样修改后,系统就能正确找到目标损失值,避免错误的发生
技术建议
对于使用TTS项目进行声码器训练的开发者,建议:
- 在训练初期仔细检查损失函数的输出情况
- 根据模型的实际训练阶段选择合适的损失作为目标
- 对于GAN类模型,要注意判别器和生成器的训练时机
- 在配置文件中明确指定与当前训练阶段匹配的目标损失
总结
这个案例展示了深度学习项目中配置细节的重要性。即使是默认配置,也可能因为模型特性的不同而导致训练过程中的异常。理解模型的工作原理和训练流程,能够帮助开发者快速定位和解决类似的问题。对于TTS项目中的声码器训练,特别是基于GAN的模型,开发者需要特别关注损失函数的设置和训练阶段的协调。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
208
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193