Wenet项目中Whisper模型CTC解码出现特殊字符问题的分析与解决
问题背景
在Wenet项目中使用Whisper-large-v3模型进行语音识别训练时,研究人员发现了一个有趣的现象:当使用CTC解码模式(包括ctc_greedy_search、ctc_prefix_beam_search和attention_rescoring)时,解码结果中会出现特殊字符"�",而使用纯attention解码则表现正常。
现象描述
研究人员使用100小时的语音数据(50小时普通话+50小时粤语)进行训练,遵循aishell示例中的Whisper设置,并指定单一语种"zh"。训练40轮后观察到以下现象:
- CTC解码模式下,输出结果中频繁出现"�"字符
- Attention解码模式下,输出结果完全正常
- 这种现象在全量微调和LoRA微调模式下都会出现
原因分析
经过深入分析,发现这个问题主要由以下几个因素导致:
-
词表规模差异:Whisper的词表包含6万个token,而传统中文ASR系统(如aishell)通常只有4千左右的词表。这种巨大的词表差异导致CTC层的很多权重在训练过程中没有得到充分学习。
-
训练不充分:由于词表规模大,CTC层的很多参数在有限训练数据下没有得到充分训练,导致解码时产生不确定的输出。
-
字节级建模特性:Whisper采用字节级建模方式,而CTC的条件独立性假设使得模型难以学习到足够的上下文信息,这也是产生特殊字符的原因之一。
解决方案
针对这个问题,Wenet项目组提出了以下解决方案:
-
使用不同的tokenizer:为CTC解码和Attention解码分别使用不同的tokenizer,这样可以更好地适应不同解码方式的特点。
-
多语种训练支持:通过修改数据集处理逻辑,添加task和language的ID信息,使模型能够正确处理多语种数据。
-
充分训练:增加训练数据量和训练轮数,确保CTC层的所有参数都能得到充分训练。
技术实现细节
在实际实现中,需要注意以下几点:
- 在数据集处理阶段,需要为每条数据添加task和language的ID信息
- 这些ID信息不仅用于推理阶段,在训练阶段也同样重要,它们帮助模型匹配Whisper原始的训练方式
- 对于多语种场景,需要确保语种ID能够正确传递给tokenizer
总结
Whisper模型在Wenet项目中的应用展现了强大的语音识别能力,但在实际使用中也会遇到一些特定问题。通过深入理解模型原理和仔细分析问题现象,我们能够找到有效的解决方案。对于CTC解码出现特殊字符的问题,采用不同的tokenizer策略和充分的多语种支持是关键的解决方向。这些经验也为后续在Wenet项目中更好地应用Whisper模型提供了宝贵参考。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00