在Assistant UI项目中处理Ollama模型输出的think标签渲染问题
2025-06-14 07:53:08作者:段琳惟
在使用基于Ollama的Deepseek模型时,开发者经常会遇到模型输出中包含<think>标签内容的问题。这些标签通常包含模型的中间思考过程,但在前端展示时,我们往往希望隐藏这些内容或进行特殊处理。本文将详细介绍如何在Assistant UI项目中优雅地解决这一问题。
理解think标签的作用
<think>标签是大型语言模型(LLM)在生成响应时常用的特殊标记,它包含了模型生成最终答案前的思考过程。这些内容对于调试和理解模型行为很有帮助,但在生产环境中展示给终端用户时可能会造成困惑。
解决方案概述
在Assistant UI项目中,我们可以通过以下两种方式处理think标签:
- 完全移除think标签内容:使用rehype-raw插件来解析并过滤掉这些标签
- 替换显示内容:将think标签内容替换为更友好的提示信息
具体实现方法
方法一:使用rehype-raw插件过滤
首先安装必要的依赖:
npm install rehype-raw
然后在markdown-text.ts文件中进行配置:
import rehypeRaw from "rehype-raw";
const MarkdownTextImpl = () => {
return (
<MarkdownTextPrimitive
remarkPlugins={[remarkGfm, rehypeRaw]}
className="aui-md"
components={defaultComponents}
/>
);
};
这种方法会完全移除<think>标签及其内容,确保前端不会显示模型的中间思考过程。
方法二:自定义think标签渲染
如果希望保留某种形式的提示,可以自定义think标签的渲染方式:
const defaultComponents = memoizeMarkdownComponents({
["think" as string]: ({ children }) => {
return <p>Thinking...</p>
}
});
这样,所有的<think>标签内容都会被替换为"Thinking..."的提示,既保持了界面的整洁,又让用户知道模型正在处理信息。
技术原理分析
rehype-raw是一个强大的HTML处理插件,它能够解析Markdown中的原始HTML内容。当与React Markdown组件结合使用时,它允许我们:
- 解析包含HTML标签的Markdown内容
- 提供对特定HTML标签的自定义处理能力
- 保持Markdown其他特性的正常渲染
memoizeMarkdownComponents则用于优化组件性能,确保自定义组件的渲染不会造成不必要的重绘。
最佳实践建议
- 开发环境:可以考虑保留think标签内容以便调试
- 生产环境:建议移除或替换think标签内容
- 用户体验:如果选择替换显示,可以使用动画或更友好的提示语
- 性能考虑:对于高频更新的内容,确保使用memoization技术优化渲染
通过以上方法,开发者可以灵活控制模型输出在前端的展示方式,提升最终用户的体验质量。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
114
仓颉编译器源码及 cjdb 调试工具。
C++
138
869