React Query 中 Mutation Filters 的正确使用方式
在 React Query 的文档中,Mutation Filters 是一个非常有用的功能,它允许开发者根据特定条件筛选出当前正在进行的 mutation 操作。然而,文档中关于 predicate 函数的使用示例存在一个容易忽略但重要的错误。
问题背景
Mutation Filters 的 predicate 函数接收一个 mutation 对象作为参数,开发者可以通过这个对象获取 mutation 的各种状态信息。文档中给出的示例代码试图通过 mutation.options.variables 来访问 mutation 的变量数据,但实际上这是不正确的访问方式。
正确的访问方式
经过对 React Query 源码的分析,我们发现 mutation 的变量实际上是存储在 state 属性中,而不是 options 属性中。因此,正确的访问方式应该是:
await queryClient.isMutating({
  predicate: (mutation) => mutation.state.variables?.id === 1,
})
技术细节解析
- 
Mutation 对象结构:在 React Query 中,每个 mutation 对象包含多个属性,其中
state属性存储了 mutation 的当前状态信息,包括 variables、data、error 等。 - 
options 属性:虽然 mutation 确实有 options 属性,但它主要包含的是 mutation 的配置信息,如 mutationKey、retry 设置等,而不包含实际的变量数据。
 - 
类型安全:在使用 TypeScript 时,错误的访问方式会导致类型错误,因为 TypeScript 类型定义中明确显示 variables 存在于 state 而非 options 中。
 
实际应用建议
在实际开发中使用 Mutation Filters 时,建议:
- 始终通过 
mutation.state访问 mutation 的状态数据 - 对于变量数据,使用 
mutation.state.variables - 结合 TypeScript 的类型提示可以避免这类错误
 - 在团队开发中,可以将正确的访问方式封装为工具函数或自定义 hook
 
总结
这个文档错误虽然看起来很小,但却可能导致开发者在实际使用中遇到困惑和错误。理解 React Query 内部数据结构的设计理念对于正确使用其 API 非常重要。Mutation 的状态数据存储在 state 属性中这一设计,与 React Query 的整体架构思想是一致的,即保持配置(options)和状态(state)的清晰分离。
通过这个案例,我们也看到即使是官方文档也可能存在需要修正的地方,作为开发者,在遇到问题时查阅源码往往能快速找到正确答案。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00