Fastjson2浮点数精度问题解析与解决方案
2025-06-16 00:34:24作者:曹令琨Iris
在JSON数据处理过程中,浮点数精度问题一直是开发者需要特别注意的技术细节。阿里巴巴开源的Fastjson2库在处理浮点数时提供了多种配置选项,但近期发现了一个关于浮点数精度的重要问题。
问题现象
当开发者使用Fastjson2的UseBigDecimalForDoubles特性时,期望将JSON中的浮点数解析为BigDecimal类型以保持精度,但实际结果却变成了Float类型,导致精度丢失。例如:
原始JSON字符串:
{"val":0.06451612903225806}
经过解析后,期望得到BigDecimal类型的0.06451612903225806,但实际上得到了Float类型的0.06451613,明显出现了精度损失。
技术背景
在Java中处理浮点数时,开发者通常面临两种选择:
- 使用基本类型float/double:计算效率高但存在精度问题
- 使用BigDecimal:精度高但计算效率较低
Fastjson2为了兼容不同场景的需求,提供了以下特性:
UseBigDecimalForDoubles:将双精度浮点数解析为BigDecimalUseBigDecimalForFloats:将单精度浮点数解析为BigDecimal
问题根源分析
经过代码审查,发现问题出在Fastjson2的类型推断逻辑上。当同时启用多个特性时,类型推断可能出现优先级错乱,导致虽然指定了使用BigDecimal,但最终仍然返回了基本类型。
解决方案
Fastjson2开发团队在2.0.58版本中修复了这个问题。现在当启用UseBigDecimalForDoubles特性时,系统会正确地将所有浮点数解析为BigDecimal类型,确保不会出现精度损失。
最佳实践建议
- 对于财务计算等需要高精度的场景,务必启用
UseBigDecimalForDoubles特性 - 升级到Fastjson2 2.0.58或更高版本
- 在关键数据处理处添加类型断言,确保得到预期的数据类型
- 对于性能敏感但精度要求不高的场景,可以考虑使用基本类型提升性能
总结
浮点数精度问题是JSON处理中的常见陷阱。Fastjson2通过提供灵活的配置选项,让开发者可以根据实际需求选择最适合的数据处理方式。这次问题的修复进一步增强了Fastjson2在精确计算场景下的可靠性,为开发者提供了更好的使用体验。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
Ascend Extension for PyTorch
Python
235
267
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669