深入理解BERT:双向Transformer编码器在自然语言处理中的应用
2025-06-04 10:11:48作者:宣聪麟
引言
BERT(Bidirectional Encoder Representations from Transformers)是自然语言处理领域具有里程碑意义的模型。本文将深入探讨BERT的核心概念、架构设计及其预训练任务,帮助读者全面理解这一革命性模型的工作原理。
从上下文无关到上下文相关的演进
传统词嵌入的局限性
早期的词嵌入模型如Word2Vec和GloVe采用上下文无关的表示方式,即无论单词出现在什么上下文中,其向量表示都是固定的。这种表示方式存在明显缺陷,无法处理自然语言中的多义性问题。
例如,"bank"一词在以下两个句子中含义完全不同:
- "I deposited money at the bank"
- "I sat by the river bank"
上下文敏感模型的发展
为解决这一问题,研究者开发了多种上下文敏感的词表示方法,包括:
- ELMo:使用双向LSTM,结合所有中间层表示
- CoVE:基于上下文向量
- TagLM:语言模型增强的序列标注器
这些模型虽然改进了词表示,但仍依赖于特定任务的架构设计。
BERT的创新设计
统一架构的优势
BERT的创新之处在于:
- 双向上下文编码:使用Transformer编码器同时考虑左右两侧的上下文
- 任务无关性:通过微调即可适应多种NLP任务,无需特定架构
- 高效预训练:设计了两个新颖的预训练任务
模型架构详解
BERT的核心是Transformer编码器堆栈,其输入表示由三部分组成:
- 词嵌入:将每个token映射为向量
- 段嵌入:区分句子对中的不同句子
- 位置嵌入:捕捉序列中的位置信息
# BERT输入表示示例
def get_tokens_and_segments(tokens_a, tokens_b=None):
tokens = ['<cls>'] + tokens_a + ['<sep>']
segments = [0] * (len(tokens_a) + 2)
if tokens_b:
tokens += tokens_b + ['<sep>']
segments += [1] * (len(tokens_b) + 1)
return tokens, segments
BERT的预训练任务
掩码语言模型(MLM)
MLM任务随机掩盖15%的输入token,要求模型预测被掩盖的词。具体掩盖策略为:
- 80%概率替换为
[MASK] - 10%概率替换为随机词
- 10%概率保持不变
这种策略避免了预训练与微调阶段的不一致性。
# MLM实现示例
class MaskLM(nn.Module):
def __init__(self, vocab_size, num_hiddens):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(num_hiddens, num_hiddens),
nn.ReLU(),
nn.LayerNorm(num_hiddens),
nn.Linear(num_hiddens, vocab_size))
def forward(self, X, pred_positions):
# 获取被掩盖位置的表示
batch_size = X.shape[0]
batch_idx = torch.arange(batch_size)
masked_X = X[batch_idx, pred_positions]
return self.mlp(masked_X)
下一句预测(NSP)
NSP任务判断两个句子是否是连续的,帮助模型理解句子间关系。具体实现:
- 50%正例(实际连续的句子)
- 50%负例(随机组合的句子)
# NSP实现示例
class NextSentencePred(nn.Module):
def __init__(self, num_inputs):
super().__init__()
self.output = nn.Linear(num_inputs, 2)
def forward(self, X):
# 使用[CLS]标记的表示进行预测
return self.output(X[:, 0, :])
完整BERT模型
将编码器和预训练任务组合成完整模型:
class BERTModel(nn.Module):
def __init__(self, vocab_size, num_hiddens, num_layers=12, heads=12):
super().__init__()
self.encoder = BERTEncoder(vocab_size, num_hiddens, num_layers, heads)
self.mlm = MaskLM(vocab_size, num_hiddens)
self.nsp = NextSentencePred(num_hiddens)
def forward(self, tokens, segments, valid_lens=None, pred_positions=None):
encoded_X = self.encoder(tokens, segments, valid_lens)
mlm_Y_hat = self.mlm(encoded_X, pred_positions) if pred_positions else None
nsp_Y_hat = self.nsp(encoded_X)
return encoded_X, mlm_Y_hat, nsp_Y_hat
总结
BERT通过创新的预训练任务和双向Transformer架构,实现了上下文敏感的深度语言表示。其关键优势在于:
- 双向上下文编码能力
- 统一的架构适应多种任务
- 高效的预训练策略
这些特性使BERT在11项NLP任务上取得了state-of-the-art的结果,推动了自然语言处理领域的重大进步。理解BERT的工作原理对于掌握现代NLP技术至关重要。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
247
2.45 K
deepin linux kernel
C
24
6
仓颉编译器源码及 cjdb 调试工具。
C++
116
89
React Native鸿蒙化仓库
JavaScript
217
297
暂无简介
Dart
546
119
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.01 K
595
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
409
Ascend Extension for PyTorch
Python
85
118
仓颉编程语言运行时与标准库。
Cangjie
124
102
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
592
121