深入理解BERT:双向Transformer编码器在自然语言处理中的应用
2025-06-04 01:40:05作者:宣聪麟
引言
BERT(Bidirectional Encoder Representations from Transformers)是自然语言处理领域具有里程碑意义的模型。本文将深入探讨BERT的核心概念、架构设计及其预训练任务,帮助读者全面理解这一革命性模型的工作原理。
从上下文无关到上下文相关的演进
传统词嵌入的局限性
早期的词嵌入模型如Word2Vec和GloVe采用上下文无关的表示方式,即无论单词出现在什么上下文中,其向量表示都是固定的。这种表示方式存在明显缺陷,无法处理自然语言中的多义性问题。
例如,"bank"一词在以下两个句子中含义完全不同:
- "I deposited money at the bank"
- "I sat by the river bank"
上下文敏感模型的发展
为解决这一问题,研究者开发了多种上下文敏感的词表示方法,包括:
- ELMo:使用双向LSTM,结合所有中间层表示
- CoVE:基于上下文向量
- TagLM:语言模型增强的序列标注器
这些模型虽然改进了词表示,但仍依赖于特定任务的架构设计。
BERT的创新设计
统一架构的优势
BERT的创新之处在于:
- 双向上下文编码:使用Transformer编码器同时考虑左右两侧的上下文
- 任务无关性:通过微调即可适应多种NLP任务,无需特定架构
- 高效预训练:设计了两个新颖的预训练任务
模型架构详解
BERT的核心是Transformer编码器堆栈,其输入表示由三部分组成:
- 词嵌入:将每个token映射为向量
- 段嵌入:区分句子对中的不同句子
- 位置嵌入:捕捉序列中的位置信息
# BERT输入表示示例
def get_tokens_and_segments(tokens_a, tokens_b=None):
tokens = ['<cls>'] + tokens_a + ['<sep>']
segments = [0] * (len(tokens_a) + 2)
if tokens_b:
tokens += tokens_b + ['<sep>']
segments += [1] * (len(tokens_b) + 1)
return tokens, segments
BERT的预训练任务
掩码语言模型(MLM)
MLM任务随机掩盖15%的输入token,要求模型预测被掩盖的词。具体掩盖策略为:
- 80%概率替换为
[MASK]
- 10%概率替换为随机词
- 10%概率保持不变
这种策略避免了预训练与微调阶段的不一致性。
# MLM实现示例
class MaskLM(nn.Module):
def __init__(self, vocab_size, num_hiddens):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(num_hiddens, num_hiddens),
nn.ReLU(),
nn.LayerNorm(num_hiddens),
nn.Linear(num_hiddens, vocab_size))
def forward(self, X, pred_positions):
# 获取被掩盖位置的表示
batch_size = X.shape[0]
batch_idx = torch.arange(batch_size)
masked_X = X[batch_idx, pred_positions]
return self.mlp(masked_X)
下一句预测(NSP)
NSP任务判断两个句子是否是连续的,帮助模型理解句子间关系。具体实现:
- 50%正例(实际连续的句子)
- 50%负例(随机组合的句子)
# NSP实现示例
class NextSentencePred(nn.Module):
def __init__(self, num_inputs):
super().__init__()
self.output = nn.Linear(num_inputs, 2)
def forward(self, X):
# 使用[CLS]标记的表示进行预测
return self.output(X[:, 0, :])
完整BERT模型
将编码器和预训练任务组合成完整模型:
class BERTModel(nn.Module):
def __init__(self, vocab_size, num_hiddens, num_layers=12, heads=12):
super().__init__()
self.encoder = BERTEncoder(vocab_size, num_hiddens, num_layers, heads)
self.mlm = MaskLM(vocab_size, num_hiddens)
self.nsp = NextSentencePred(num_hiddens)
def forward(self, tokens, segments, valid_lens=None, pred_positions=None):
encoded_X = self.encoder(tokens, segments, valid_lens)
mlm_Y_hat = self.mlm(encoded_X, pred_positions) if pred_positions else None
nsp_Y_hat = self.nsp(encoded_X)
return encoded_X, mlm_Y_hat, nsp_Y_hat
总结
BERT通过创新的预训练任务和双向Transformer架构,实现了上下文敏感的深度语言表示。其关键优势在于:
- 双向上下文编码能力
- 统一的架构适应多种任务
- 高效的预训练策略
这些特性使BERT在11项NLP任务上取得了state-of-the-art的结果,推动了自然语言处理领域的重大进步。理解BERT的工作原理对于掌握现代NLP技术至关重要。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0288Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
162
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15

React Native鸿蒙化仓库
C++
199
279

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

Git4Research旨在构建一个开放、包容、协作的研究社区,让更多人能够参与到科学研究中,共同推动知识的进步。
HTML
23
1

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
950
557

基于QEMU构建的RISC-V64 SOC,支持Linux,baremetal, RTOS等,适合用来学习Linux,后续还会添加大量的controller,实现无需实体开发板,即可学习Linux和RISC-V架构
C
19
5