Greykite 开源项目安装与使用指南
2024-09-28 20:24:16作者:沈韬淼Beryl
项目概述
Greykite 是由 LinkedIn 开发的一个灵活、直观且快速的预测库,旨在简化时间序列预测模型的开发流程。它采用了旗舰算法 Silverkite,并提供了全面的支持来处理趋势、季节性、节假日效应、突变点以及自回归等复杂的时间序列特性。此外,Greykite 还拥有一个异常检测扩展模块,强调了预测的可解释性和业务相关性。
1. 目录结构及介绍
以下是 Greykite 的基本目录结构及其主要组件简介:
greykite/
├── docs # 文档资料,包括API文档和用户指南。
├── greykite # 主要包,包含了所有核心函数和类。
│ ├── common # 共享工具函数和数据加载相关的模块。
│ ├── compute # 预测计算相关的逻辑实现。
│ ├── constants # 常量定义。
│ ├── framework # 框架层,包含模板、模型接口等。
│ └── util # 辅助实用程序。
├── notebooks # 示例和教程Jupyter笔记本。
├── tests # 单元测试和集成测试代码。
├── requirements-dev.txt # 开发环境依赖列表。
├── setup.cfg # Python打包配置文件。
├── setup.py # 安装脚本。
└── README.rst # 项目说明文档。
- docs:包含详尽的文档,帮助开发者理解和使用 Greykite。
- greykite 包含了库的核心功能模块。
- common: 提供数据处理和加载的功能。
- framework: 提供模型构建、预测等的核心框架。
- notebooks:提供实例演示和教程。
- tests:确保代码质量的单元测试。
- setup相关文件用于项目的安装与配置。
2. 项目启动文件介绍
在 Greykite 中,并没有一个单一的“启动”文件,但用户通常从导入关键模块开始他们的预测任务。例如,开发预测模型时,首先需要导入 Greykite 相关的库和类,如下面的示例所示:
from greykite.framework.templates.autogen.forecast_config import ForecastConfig
from greykite.framework.templates.model_templates import ModelTemplateEnum
from greykite.framework.templates.forecaster import Forecaster
# 更多可能需要导入的数据处理或模型选择模块...
实际的应用启动,通常是通过初始化 Forecaster 类并调用其方法来运行预测配置开始的。
3. 项目的配置文件介绍
Greykite 使用 ForecastConfig 类作为配置参数容器,这并不是一个独立的物理配置文件,而是通过代码定义的结构。它允许用户指定诸如时间列(time_col)、值列(value_col)、使用的模型模板(model_template)、预测范围(forecast_horizon)、置信区间覆盖度(coverage)等关键参数。以下是如何创建一个基本配置的示例:
config = ForecastConfig(
metadata_param=MetadataParam(time_col="ts", value_col="count"),
model_template=ModelTemplateEnum.AUTO,
forecast_horizon=24,
coverage=0.95,
)
开发者可以通过修改这个 ForecastConfig 实例中的各项属性,来定制化自己的预测需求,而无需直接编辑外部配置文件。
为了更详细地了解每个配置项的意义和使用方式,建议参考 Greykite 的官方文档和提供的示例 notebook,在那里可以找到更深入的指导和实践案例。安装 Greykite 可以通过pip命令完成:pip install greykite。对于进一步的安装指南和高级用法,请访问其GitHub页面或官方网站。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.88 K
暂无简介
Dart
671
155
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
310
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1