ISAT_with_segment_anything项目v1.3.4版本发布:语义分割标注工具的重大升级
项目简介
ISAT_with_segment_anything是一个基于Segment Anything Model(SAM)的交互式语义分割标注工具。该项目将SAM的强大分割能力与专业标注工具相结合,显著提升了语义分割数据标注的效率。通过智能算法辅助人工标注,该项目已经成为计算机视觉领域研究人员和工程师进行图像标注的重要工具。
v1.3.4版本核心更新
1. VOC格式转换功能优化
在语义分割任务中,VOC格式是广泛使用的标准格式之一。本次更新针对VOC格式转换增加了关键功能:
- 类别颜色一致性保持:新增了"使用设置的类别颜色"选项,确保导出的PNG图片与标注工具中设置的类别颜色完全一致。这一改进虽然不影响数据实际使用,但为标注人员提供了更直观的视觉反馈,便于质量检查。
- 技术意义:在语义分割任务中,类别与颜色的映射关系对于模型训练没有影响,但保持一致性有助于人工检查标注质量,减少视觉混淆。
2. COCO数据集转换逻辑改进
COCO格式是另一个广泛使用的目标检测和分割数据集格式。本次更新优化了转换逻辑:
- 智能类别获取机制:转换过程现在优先从isat.yaml配置文件中获取类别信息,如果文件不存在,则采用渐进式类别添加策略。这一改进使转换过程更加灵活,适应不同来源的数据集。
- 工程实践价值:这种设计既保证了已有配置的优先使用,又兼容了临时标注场景的需求,体现了工具设计的实用性考量。
3. 多边形面积计算功能增强
在遥感、医学图像等专业领域,目标对象的面积计算是重要指标:
- 实时计算模式:新增了可配置的实时面积计算功能,用户可在设置中开启。开启后,任何多边形编辑操作(顶点调整、重绘、布尔运算等)都会触发实时面积更新。
- 可视化反馈:编辑界面新增了面积显示功能,通过快捷键E或双击多边形即可查看当前多边形的精确面积。
- 性能考量:考虑到计算开销,工具提供了关闭实时计算的选项,仅在保存时更新面积,满足不同性能需求的场景。
4. 用户体验优化
- 辅助线视觉改进:将辅助线改为虚线样式,显著降低了对原始图像的遮挡,使标注过程更加清晰。
- 交互稳定性提升:修复了重绘模式下提示线偶尔不显示的问题,提高了标注流程的连贯性。
技术细节深入
中文编码问题解决
本次更新彻底解决了配置文件和标注文件中的中文乱码问题。这是通过以下技术方案实现的:
- 统一使用UTF-8编码进行文件读写
- 增加了编码自动检测和转换机制
- 对文件头信息进行了标准化处理
这一改进特别有利于中文用户,使类别名称等信息能够正确保存和显示。
安装与使用建议
项目团队强烈推荐使用pip进行安装和管理:
# 安装
pip install isat-sam
# 使用
isat-sam
# 更新
pip install --upgrade isat-sam
这种安装方式能够自动解决依赖关系,减少环境配置问题。特别是对于遇到闪退等问题的用户,pip安装通常能解决大多数环境冲突问题。
应用场景与价值
ISAT_with_segment_anything v1.3.4版本的改进使其在以下场景中更具优势:
- 大规模数据集标注:优化的转换功能支持与主流格式的无缝对接,便于融入现有训练流程。
- 精确测量场景:实时面积计算功能特别适合需要定量分析的领域,如医学图像分析、农业遥感等。
- 团队协作项目:统一的中文编码处理和颜色一致性保持,使团队协作更加顺畅。
总结
ISAT_with_segment_anything v1.3.4版本通过一系列实用改进,进一步巩固了其作为专业语义分割标注工具的地位。从格式转换的灵活性到标注过程的精确性,再到用户体验的流畅性,每个更新点都体现了开发团队对实际标注工作流程的深刻理解。特别是对中文环境的完善支持,使得该工具更加适合国内的研究和应用场景。
对于计算机视觉领域的研究人员和工程师而言,这一版本的发布意味着更高效率的标注工作和更可靠的数据质量。随着项目的持续迭代,ISAT_with_segment_anything有望成为语义分割标注的事实标准工具之一。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~092Sealos
以应用为中心的智能云操作系统TSX00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile01
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选









