JHenTai项目中的快速搜索功能改进解析
背景介绍
JHenTai是一款针对特定内容平台的客户端应用,其快速搜索功能是用户日常使用频率较高的核心功能之一。在最新版本中,开发团队对搜索功能进行了重要改进,使其能够更好地支持复杂搜索条件的构建。
功能改进要点
本次改进主要针对快速搜索窗口的搜索条件输入方式进行了优化,重点解决了以下问题:
-
特殊搜索符号支持:现在系统能够正确识别并处理平台支持的"-"(排除)和"~"(或)等搜索运算符。
-
可视化标签管理:改进后的界面会在用户输入后自动生成可点击的标签按钮,这些按钮会显示在输入框下方,大大提升了界面的整洁度和可操作性。
-
状态切换功能:用户可以通过点击标签按钮,在"正常词条"、"-排除"和"~或者"三种状态间循环切换,无需手动输入特殊符号。
技术实现分析
从技术角度看,这次改进涉及以下几个关键点:
-
输入解析器增强:系统现在能够解析用户输入的原始文本,识别其中的标签和运算符,并将其转化为结构化数据。
-
状态管理机制:每个标签按钮都维护着自己的状态(正常/排除/或),点击时会触发状态变更并更新对应的搜索条件。
-
UI/UX优化:通过将长文本标签转化为可操作的按钮元素,既解决了显示空间不足的问题,又提升了用户交互体验。
用户价值
这一改进为用户带来了显著的使用便利:
-
复杂搜索更便捷:用户现在可以轻松构建包含多种条件的复杂搜索,如同时包含必须匹配、可选匹配和排除条件的组合搜索。
-
输入效率提升:无需记忆和手动输入特殊符号,通过简单的点击操作即可完成搜索条件的配置。
-
界面更清晰:长标签不再影响界面布局,所有搜索条件都以整洁的按钮形式呈现。
总结
JHenTai的这次快速搜索功能改进,从实际用户需求出发,通过技术创新解决了原有使用痛点,体现了开发团队对用户体验的重视。这种将复杂功能简化为直观交互的设计思路,值得其他开发者借鉴。随着平台功能的不断完善,JHenTai将继续为用户提供更优质的内容浏览体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00