微软eBPF项目中的epoch同步死锁问题分析
在微软eBPF for Windows项目中,最近发现了一个与epoch同步机制相关的死锁问题。这个问题出现在km_mt_stress_tests_restart_extension测试用例中,导致系统挂起。
问题背景
eBPF(扩展伯克利包过滤器)是一个在内核中运行沙盒程序的框架,微软的eBPF for Windows项目将其移植到Windows平台。项目中使用了epoch机制来管理内存安全,确保在并发访问时不会出现内存安全问题。
问题现象
在测试过程中,系统出现了两个线程互相阻塞的情况:
-
第一个线程正在执行
ebpf_epoch_synchronize操作,这是eBPF核心模块中用于同步epoch状态的函数。该线程随后调用了_ebpf_program_type_specific_program_information_detach_provider函数,试图解除程序类型特定信息的提供者绑定。 -
第二个线程同样在执行
ebpf_epoch_synchronize操作,但在调用栈中可以看到它正在尝试创建新的eBPF程序(ebpf_program_create)。
根本原因分析
经过深入分析,发现问题并非出在epoch机制本身,而是出在_ebpf_program_type_specific_program_information_detach_provider函数的实现上。该函数在不应该调用同步操作的情况下调用了ebpf_epoch_synchronize,特别是在提供者从未成功附加的情况下。
具体来说,当程序类型特定的信息提供者尝试解除绑定时,它错误地执行了epoch同步操作。这导致了死锁情况,因为另一个线程正在尝试创建新的eBPF程序,也需要进行epoch同步。
解决方案
修复方案是修改_ebpf_program_type_specific_program_information_detach_provider函数的实现,确保它不会在提供者从未成功附加的情况下调用同步操作。这样可以避免不必要的同步操作,防止死锁情况的发生。
技术启示
这个案例给我们几个重要的技术启示:
-
同步机制的谨慎使用:在复杂的并发系统中,同步操作需要非常谨慎地使用,特别是在可能被多个线程同时调用的路径上。
-
错误路径处理:在错误处理路径上(如提供者附加失败的情况),应该避免执行可能导致阻塞的操作。
-
测试的重要性:这种并发问题往往在压力测试下才会显现,说明全面的测试覆盖对于发现并发问题至关重要。
-
调用栈分析的价值:通过分析死锁时的调用栈,可以快速定位问题根源,这是诊断复杂并发问题的有效手段。
这个问题已经被修复,相关测试用例现在可以正常通过。这个案例展示了在系统编程中,特别是涉及并发和内存管理的场景下,需要格外注意同步机制的使用方式。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00