探索未来视角:EscherNet——一种用于可扩展视图合成的生成模型
2024-06-06 01:00:24作者:龚格成

在计算机视觉领域,我们正见证着从二维图像理解向三维空间重建和视图合成转变的革命。EscherNet,一个由杰出研究团队开发的创新项目,为这个转变提供了新的动力。它是一个多视图条件下的扩散模型,专为**相机位置编码(CaPE)**设计,使得对任意数量的参考和目标视图之间的精确、连续的相对控制成为可能。
项目介绍
EscherNet的核心理念是学习隐式且可生成的3D表示,并结合CaPE,允许在不同视图间进行精确的相机变换。通过这种方式,EscherNet能够以高效和灵活的方式生成新视角的图像,无论输入视图的数量多少。它的强大之处在于能够处理从单个到多个参考视图的情景,从而实现大规模的视图合成任务。
技术分析
该项目基于先进的深度学习架构,尤其是扩散模型和注意力机制。在Transformer中应用了CaPE,将相机姿态信息编码到自注意力和交叉注意力中,增强了模型对相机移动的敏感度。此外,项目提供了一个全面的训练框架,包括数据预处理、模型训练和评估,以及在多个数据集上的应用示例。
应用场景
EscherNet的技术可以广泛应用于多个领域:
- 虚拟现实与增强现实:提供更真实的环境感知,增强用户体验。
- 机器人导航:帮助机器人理解周围环境并预测不同视角下的情况。
- 3D建模:加速和优化复杂对象的三维重建过程。
- 游戏开发:生成动态的、多角度的游戏画面,增加游戏的沉浸感。
项目特点
- 多视图条件适应性:支持任意数量的参考视图,实现视图合成的灵活性。
- 相机定位编码:CaPE技术提高了对相机变换的精度和控制力。
- 高性能训练:支持大批次训练,利用混合精度(bf16)和梯度检查点加速训练。
- 广泛的数据集支持:包括Google扫描物体、RTMV、NeRF_Synthetic等多个数据集的兼容性。
为了体验EscherNet的强大功能,你可以按照提供的安装和运行指南进行操作。项目也提供了详细的训练和评估脚本,以帮助你快速上手并探索自己的应用场景。
如果你在这个领域的研究或应用中找到了灵感,请不要忘记引用该项目的论文:
@article{kong2024eschernet,
title={EscherNet: A Generative Model for Scalable View Synthesis},
author={Kong, Xin and Liu, Shikun and Lyu, Xiaoyang and Taher, Marwan and Qi, Xiaojuan and Davison, Andrew J},
journal={arXiv preprint arXiv:2402.03908},
year={2024}
}
让我们一起迈向三维视图合成的新时代,用EscherNet开启无限的创意可能!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
408
3.15 K
Ascend Extension for PyTorch
Python
226
252
暂无简介
Dart
674
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
321
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
React Native鸿蒙化仓库
JavaScript
263
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868