Stable Diffusion WebUI AMDGPU 版本中Face Restoration功能失效问题分析
2025-07-04 10:04:10作者:虞亚竹Luna
问题背景
在Stable Diffusion WebUI AMDGPU版本中,用户报告了一个关键功能问题:Face Restoration(面部修复)功能在最近一次更新后完全失效。该问题表现为在使用GFPGAN或Codeformers进行面部修复时,系统无法正常加载模型,导致功能无法使用。同时,控制台会输出一系列错误信息。
技术分析
错误现象
当用户尝试使用面部修复功能时,系统会抛出以下关键错误:
RuntimeError: don't know how to restore data location of torch.storage.UntypedStorage (tagged with privateuseone:0)
这个错误表明系统在尝试加载面部修复模型时,无法正确处理模型的存储位置。错误发生在torch的序列化过程中,具体是在尝试恢复存储位置时失败。
根本原因
经过分析,这个问题与DirectML后端的使用有关。错误信息中的"privateuseone:0"标签表明系统正在尝试使用DirectML设备,但在模型加载过程中出现了兼容性问题。具体表现为:
- 模型文件(.pth格式)在加载时无法正确映射到DirectML设备
- Torch的序列化/反序列化过程对DirectML设备的支持不完善
- 存储位置恢复机制在DirectML环境下存在缺陷
影响范围
该问题主要影响:
- 使用Intel Arc显卡的用户
- 在Windows系统上通过DirectML后端运行Stable Diffusion的用户
- 依赖面部修复功能(如GFPGAN、Codeformers)的工作流程
解决方案
临时解决方法
对于急需使用面部修复功能的用户,可以尝试以下临时方案:
- 切换到CPU模式运行面部修复功能
- 使用旧版本的面部修复模型
- 考虑使用其他替代的面部修复工具
长期修复
项目维护者已在后续版本中修复了此问题。修复方案主要包括:
- 改进了DirectML环境下的模型加载机制
- 增强了存储位置恢复的兼容性处理
- 优化了设备映射逻辑
技术建议
对于开发者而言,在DirectML环境下开发时应注意:
- 模型序列化/反序列化时要考虑设备兼容性
- 实现完善的错误处理和回退机制
- 对关键功能进行多设备测试
- 保持torch和相关依赖库的版本兼容性
总结
Stable Diffusion WebUI AMDGPU版本中的面部修复功能失效问题,揭示了在DirectML环境下模型加载的特殊挑战。通过理解torch的存储机制和设备映射原理,开发者可以更好地处理类似问题。该问题的解决不仅修复了面部恢复功能,也为DirectML环境下的其他功能开发提供了宝贵经验。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.87 K
暂无简介
Dart
671
155
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
309
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1