Stable Diffusion WebUI AMDGPU 版本中Face Restoration功能失效问题分析
2025-07-04 10:04:10作者:虞亚竹Luna
问题背景
在Stable Diffusion WebUI AMDGPU版本中,用户报告了一个关键功能问题:Face Restoration(面部修复)功能在最近一次更新后完全失效。该问题表现为在使用GFPGAN或Codeformers进行面部修复时,系统无法正常加载模型,导致功能无法使用。同时,控制台会输出一系列错误信息。
技术分析
错误现象
当用户尝试使用面部修复功能时,系统会抛出以下关键错误:
RuntimeError: don't know how to restore data location of torch.storage.UntypedStorage (tagged with privateuseone:0)
这个错误表明系统在尝试加载面部修复模型时,无法正确处理模型的存储位置。错误发生在torch的序列化过程中,具体是在尝试恢复存储位置时失败。
根本原因
经过分析,这个问题与DirectML后端的使用有关。错误信息中的"privateuseone:0"标签表明系统正在尝试使用DirectML设备,但在模型加载过程中出现了兼容性问题。具体表现为:
- 模型文件(.pth格式)在加载时无法正确映射到DirectML设备
- Torch的序列化/反序列化过程对DirectML设备的支持不完善
- 存储位置恢复机制在DirectML环境下存在缺陷
影响范围
该问题主要影响:
- 使用Intel Arc显卡的用户
- 在Windows系统上通过DirectML后端运行Stable Diffusion的用户
- 依赖面部修复功能(如GFPGAN、Codeformers)的工作流程
解决方案
临时解决方法
对于急需使用面部修复功能的用户,可以尝试以下临时方案:
- 切换到CPU模式运行面部修复功能
- 使用旧版本的面部修复模型
- 考虑使用其他替代的面部修复工具
长期修复
项目维护者已在后续版本中修复了此问题。修复方案主要包括:
- 改进了DirectML环境下的模型加载机制
- 增强了存储位置恢复的兼容性处理
- 优化了设备映射逻辑
技术建议
对于开发者而言,在DirectML环境下开发时应注意:
- 模型序列化/反序列化时要考虑设备兼容性
- 实现完善的错误处理和回退机制
- 对关键功能进行多设备测试
- 保持torch和相关依赖库的版本兼容性
总结
Stable Diffusion WebUI AMDGPU版本中的面部修复功能失效问题,揭示了在DirectML环境下模型加载的特殊挑战。通过理解torch的存储机制和设备映射原理,开发者可以更好地处理类似问题。该问题的解决不仅修复了面部恢复功能,也为DirectML环境下的其他功能开发提供了宝贵经验。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881