PEFT v0.15.0发布:参数高效微调技术的新突破
项目简介
PEFT(Parameter-Efficient Fine-Tuning)是Hugging Face推出的一个专注于参数高效微调的开源库。它通过创新的微调技术,使得大型语言模型能够在保持高性能的同时,大幅减少需要训练的参数数量。这种方法特别适合资源有限的环境,让更多开发者和研究者能够轻松地对大型模型进行定制化训练。
核心亮点
1. 创新方法:CorDA智能初始化技术
本次发布的v0.15.0版本引入了CorDA(Context-Oriented Decomposition Adaptation)这一创新性的初始化方法。CorDA通过两种独特模式显著提升了微调效率:
- 知识保留模式:智能识别并保留模型中的通用知识权重,特别适合需要保持原有知识结构的任务
- 指令保留模式:专注于任务相关权重,优化特定任务(如分类)的性能表现
这种方法通过外部数据集分析,实现了对模型权重的智能选择,相比传统随机初始化能获得更好的微调起点。
2. 可训练令牌技术
新引入的Trainable Tokens功能解决了传统方法中的一大痛点——全量嵌入矩阵训练。该技术实现了:
- 选择性令牌训练:仅针对特定令牌(如推理/思考令牌)进行训练,无需处理整个嵌入矩阵
- 内存效率提升:显著降低内存占用,使模型训练更加轻量化
- 灵活组合:可与LoRA适配器协同使用,通过
trainable_token_indices
参数实现联合优化
重要技术增强
1. 多头注意力模块支持
v0.15.0扩展了LoRA对多头注意力模块的支持(目前仅限_qkv_same_embed_dim=True
的情况)。这一改进解决了之前这些特殊模块无法有效应用LoRA的技术难题,为更复杂的模型架构提供了更好的支持。
2. 热插拔功能升级
热插拔功能现在支持:
- 不同alpha缩放比例的适配器切换
- 不同秩(rank)的适配器切换
- 无需重新编译模型即可完成上述操作
开发者只需在模型编译前调用prepare_model_for_compiled_hotswap()
,即可享受这一灵活特性。
3. GPTQ模型支持
考虑到AutoGPTQ项目已停止维护,新版本增加了对GPTQModel的支持,确保了量化模型用户能够继续享受PEFT带来的便利。
关键改进与优化
-
目标模块选择增强:
all-linear
参数现在可应用于自定义(非Transformers)模型,同时修复了可能误选非线性层的bug。 -
内部API重构:简化了调谐器方法注册流程,现在只需调用
register_peft_method()
即可完成注册。 -
混合适配器批次支持:现在可以与束搜索(beam search)协同工作,扩展了应用场景。
-
模块保存优化:修复了
modules_to_save
键可能错误匹配子字符串的问题,提升了稳定性。 -
输入类型转换控制:新增
disable_input_dtype_casting=True
参数,允许禁用LoRA适配器的输入dtype自动转换。 -
模式匹配增强:
rank_pattern
和alpha_pattern
现在支持完整路径匹配(使用^前缀)。 -
嵌入矩阵调整优化:AutoPeftModels现在只在必要时(令牌数超过当前矩阵容量)才会调整嵌入矩阵大小。
技术影响与展望
PEFT v0.15.0的这些改进不仅提升了库的功能性和稳定性,更重要的是降低了大型模型微调的技术门槛。特别是CorDA和Trainable Tokens等创新技术的引入,为参数高效微调领域开辟了新的研究方向。
对于资源有限的研究团队和个人开发者来说,这些优化意味着:
- 更少的计算资源消耗
- 更快的模型迭代速度
- 更灵活的微调策略选择
- 更稳定的训练过程
随着PEFT生态的不断完善,参数高效微调技术有望成为大型语言模型应用的标准实践,推动AI技术更加普惠化发展。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









