Apache Storm 教程
2024-08-07 09:35:09作者:沈韬淼Beryl
1. 项目介绍
Apache Storm 是一个分布式实时计算系统,它允许开发者处理无界数据流,就像处理数据库查询一样简单。Storm 高度可扩展并且容错性良好,保证每个消息至少被处理一次(at-least-once processing guarantee)。这个技术广泛应用于实时分析、在线机器学习、连续计算、大数据处理以及任何需要实时处理数据的应用场景。
2. 项目快速启动
环境准备
确保你的系统已经安装了 Java 8 或更高版本。
安装 Storm
下载并解压
wget https://downloads.apache.org/storm/apache-storm-3.0.3/apache-storm-3.0.3.tar.gz
tar -zxvf apache-storm-3.0.3.tar.gz
cd apache-storm-3.0.3
配置环境变量
在 .bashrc
文件中添加以下内容:
export STORM_HOME=/path/to/your/storm-installation
export PATH=$PATH:$STORM_HOME/bin
source ~/.bashrc
启动 Storm
storm nimbus & # 启动 Nimbus 主节点
storm worker & # 启动 Worker 节点
storm ui & # 启动 UI 服务
创建并运行示例拓扑
创建一个简单的 WordCount
拓扑:
import org.apache.storm.Config;
import org.apache.storm.LocalCluster;
import org.apache.storm.topology.TopologyBuilder;
import org.apache.storm.tuple.Fields;
import org.apache.storm.streaming.BasicBolt;
import org.apache.storm.streaming.ProcessingTime;
import org.apache.storm.streaming.StreamBasicBolt;
public class WordCountTopology {
public static void main(String[] args) throws Exception {
TopologyBuilder builder = new TopologyBuilder();
// 创建 Spout
builder.setSpout("spout", new SimpleSentenceSpout(), 1);
// 创建 Bolt
StreamBasicBolt split = new SplitSentence().withFields(new Fields("word"));
builder.setBolt("split", split, 4).shuffleGrouping("spout");
StreamBasicBolt count = new WordCount().withProcessingTime(ProcessingTime.ofSeconds(5));
builder.setBolt("count", count, 4).fieldsGrouping("split", new Fields("word"));
Config config = new Config();
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("word-count", config, builder.createTopology());
// 运行一段时间后停止
Thread.sleep(10000);
cluster.shutdown();
}
}
编译并运行:
mvn clean package
java -cp target/word-count-1.0-SNAPSHOT-jar-with-dependencies.jar com.example.WordCountTopology
3. 应用案例和最佳实践
- 实时分析:实时处理来自传感器或日志的数据,提供实时洞察。
- 流式处理:处理高并发和大规模数据流,例如社交平台流数据的实时分析。
- 数据清洗:从原始数据中过滤出有用的信息,去除噪声。
- 事件驱动架构:作为事件处理器,响应特定事件触发的操作。
- 最佳实践
- 使用 Docker 或 Kubernetes 进行集群部署,便于管理和扩展。
- 优化拓扑结构,合理设置 worker 和 executor 数量。
- 利用 Storm 的容错机制确保数据完整性。
4. 典型生态项目
- Kafka-Storm:将 Kafka 中的消息流接入 Storm 进行实时处理。
- Trident:Storm 的高级 API,用于构建可靠的、低延迟的实时计算应用。
- Hadoop-Storm:集成 HDFS,实现 Storm 与 Hadoop 数据湖之间的数据交互。
- Zookeeper:配合 Zookeeper 实现集群协调和服务发现。
通过上述步骤,你应该对 Apache Storm 有了初步了解,并能够搭建本地开发环境及运行示例。深入使用时,参考官方文档以获取更多详细信息和最佳实践。祝你在实时计算的世界里探索愉快!
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K