DSPy项目对OpenAI o4模型支持问题的分析与解决方案
问题背景
在DSPy项目的最新版本2.6.17中,开发人员发现当尝试使用OpenAI最新推出的o4系列模型时,系统无法正确处理这些模型的特定参数要求。这一问题主要源于DSPy客户端代码中对模型名称的正则匹配模式未能及时更新,导致系统错误地使用了不兼容的参数传递方式。
技术细节分析
DSPy项目中的dspy.clients.lm
模块原本设计了一个模型名称匹配机制,用于区分不同类型的OpenAI模型。该机制通过正则表达式^o([13])(?:-mini)?
来识别o1和o3系列模型,并针对这些"推理模型"设置特定的参数要求(如temperature=1.0和max_tokens≥5000)。
然而,随着OpenAI推出o4系列模型,这一匹配模式变得不再完整。o4模型同样属于推理模型类别,需要使用max_completion_tokens
而非max_tokens
参数,但现有的正则表达式未能将其纳入匹配范围,导致系统错误地使用了标准参数传递方式。
问题表现
当开发者尝试使用o4模型时,系统会抛出以下错误:
litellm.BadRequestError: OpenAIException - Unsupported parameter: 'max_tokens' is not supported with this model. Use 'max_completion_tokens' instead.
此外,部分用户还报告了JSON适配器相关的格式问题:
WARNING dspy.adapters.json_adapter: Failed to use structured output format. Falling back to JSON mode. Error: 'str' object has no attribute 'items'
RuntimeError: Both structured output format and JSON mode failed. Please choose a model that supports `response_format` argument. Original error: 'str' object has no attribute 'items'
临时解决方案
在官方修复发布前,开发者可以采用以下两种临时解决方案:
-
手动修改本地DSPy安装:更新
dspy.clients.lm
模块中的正则匹配模式,将o4模型纳入推理模型处理逻辑。 -
使用TwoStepAdapter:通过配置适配器来规避问题:
dspy.configure(adapter=dspy.TwoStepAdapter(dspy.LM("openai/gpt-4o-mini", max_tokens=10_000)))
需要注意的是,使用TwoStepAdapter时需要显式设置较大的max_tokens
值,以避免输出被截断导致Pydantic验证失败。
官方修复
DSPy项目维护团队已经确认了这一问题,并在主分支中进行了修复。修复内容包括:
- 更新模型名称匹配模式,将o4系列模型纳入推理模型处理逻辑
- 确保正确使用
max_completion_tokens
参数而非max_tokens
参数 - 优化JSON适配器的错误处理机制
该修复将包含在下一个正式版本中发布。
最佳实践建议
对于需要使用最新OpenAI模型的开发者,建议:
- 关注DSPy项目的版本更新,及时升级到包含修复的版本
- 在使用新模型系列时,仔细检查参数传递方式是否符合模型API要求
- 对于结构化输出需求,考虑使用专门的适配器配置
- 在上下文切换多模型场景中,确保每个模型的参数配置都正确无误
通过这些问题和解决方案,我们可以看到AI框架与底层模型API保持同步的重要性,以及灵活适配机制在AI开发中的价值。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









