Epic项目技术文档
2024-12-27 10:13:41作者:咎岭娴Homer
以下是对Epic项目的详细技术文档,包括安装指南、使用说明、API使用文档和安装方式。
1. 安装指南
在开始使用Epic项目之前,您需要确保系统已经安装了Java。Epic使用SBT(Scala Build Tool)进行构建,因此还需要安装SBT 0.13.2版本。
构建Epic
要构建Epic项目,请按照以下步骤操作:
$ sbt assembly
这将编译所有代码、运行测试并构建一个包含所有依赖项的fatjar。
预训练模型
Epic提供了多种预训练模型,这些模型可以从Maven Central下载。您可以在项目的build.sbt文件中添加相应的依赖项,或者手动下载jar文件。
2. 项目使用说明
Epic可以通过命令行或编程方式使用。以下是如何使用Epic的基本指南。
命令行使用
Epic为解析器、命名实体识别系统和POS标签器提供了命令行接口。以下是每个系统的命令行用法:
- 解析器:
java -Xmx4g -cp /path/to/epic-assembly-0.3-SNAPSHOT.jar epic.parser.ParseText --model /path/to/model.ser.gz --nthreads <number of threads> [files]
- 命名实体识别系统:
java -Xmx4g -cp /path/to/epic-assembly-0.3-SNAPSHOT.jar epic.sequences.SegmentText --model /path/to/model.ser.gz --nthreads <number of threads> [files]
- POS标签器:
java -Xmx4g -cp /path/to/epic-assembly-0.3-SNAPSHOT.jar epic.sequences.TagText --model /path/to/model.ser.gz --nthreads <number of threads> [files]
编程使用
以下是使用Epic进行编程的一些基本步骤。
预处理文本
在模型可以使用文本之前,您需要将文本分割成句子并将句子标记化。Epic提供了类来执行这两个步骤。
val text = getSomeText()
val sentenceSplitter = MLSentenceSegmenter.bundled().get
val tokenizer = new epic.preprocess.TreebankTokenizer()
val sentences: IndexedSeq[IndexedSeq[String]] = sentenceSplitter(text).map(tokenizer).toIndexedSeq
使用解析器
要使用解析器,需要反序列化一个解析器模型并传递已分割和标记化的文本。
val parser = epic.models.deserialize[Parser[AnnotatedLabel, String]](path)
val tree = parser(sentence)
println(tree.render(sentence))
使用POS标签器
使用POS标签器的方式与使用解析器类似。
val tagger = epic.models.deserialize[CRF[AnnotatedLabel, String]](path)
val tags = tagger.bestSequence(sentence)
println(tags.render)
使用命名实体识别
使用命名实体识别器的方式也与使用POS标签器类似。
val ner = epic.models.deserialize[SemiCRF[AnnotatedLabel, String]](path)
val segments = ner.bestSequence(sentence)
println(segments.render)
3. 项目API使用文档
Epic项目的API文档可以在其GitHub Wiki上找到。具体类和方法的详细信息可以在Epic API文档中查看。
4. 项目安装方式
如前所述,Epic项目的安装方式是通过SBT构建项目。确保安装了Java和SBT 0.13.2版本后,运行以下命令:
$ sbt assembly
这将构建一个包含所有依赖项的fatjar,可以用于运行Epic项目。
以上就是Epic项目的详细技术文档,希望对您有所帮助。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 开源电子设计自动化利器:KiCad EDA全方位使用指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
260
2.52 K
deepin linux kernel
C
24
6
暂无简介
Dart
553
123
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
595
131
Ascend Extension for PyTorch
Python
94
121
仓颉编程语言命令行工具,包括仓颉包管理工具、仓颉格式化工具、仓颉多语言桥接工具及仓颉语言服务。
C++
52
67
React Native鸿蒙化仓库
JavaScript
218
301
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
600
仓颉编译器源码及 cjdb 调试工具。
C++
116
90
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.77 K