Epic项目技术文档
2024-12-27 10:13:41作者:咎岭娴Homer
以下是对Epic项目的详细技术文档,包括安装指南、使用说明、API使用文档和安装方式。
1. 安装指南
在开始使用Epic项目之前,您需要确保系统已经安装了Java。Epic使用SBT(Scala Build Tool)进行构建,因此还需要安装SBT 0.13.2版本。
构建Epic
要构建Epic项目,请按照以下步骤操作:
$ sbt assembly
这将编译所有代码、运行测试并构建一个包含所有依赖项的fatjar。
预训练模型
Epic提供了多种预训练模型,这些模型可以从Maven Central下载。您可以在项目的build.sbt
文件中添加相应的依赖项,或者手动下载jar文件。
2. 项目使用说明
Epic可以通过命令行或编程方式使用。以下是如何使用Epic的基本指南。
命令行使用
Epic为解析器、命名实体识别系统和POS标签器提供了命令行接口。以下是每个系统的命令行用法:
- 解析器:
java -Xmx4g -cp /path/to/epic-assembly-0.3-SNAPSHOT.jar epic.parser.ParseText --model /path/to/model.ser.gz --nthreads <number of threads> [files]
- 命名实体识别系统:
java -Xmx4g -cp /path/to/epic-assembly-0.3-SNAPSHOT.jar epic.sequences.SegmentText --model /path/to/model.ser.gz --nthreads <number of threads> [files]
- POS标签器:
java -Xmx4g -cp /path/to/epic-assembly-0.3-SNAPSHOT.jar epic.sequences.TagText --model /path/to/model.ser.gz --nthreads <number of threads> [files]
编程使用
以下是使用Epic进行编程的一些基本步骤。
预处理文本
在模型可以使用文本之前,您需要将文本分割成句子并将句子标记化。Epic提供了类来执行这两个步骤。
val text = getSomeText()
val sentenceSplitter = MLSentenceSegmenter.bundled().get
val tokenizer = new epic.preprocess.TreebankTokenizer()
val sentences: IndexedSeq[IndexedSeq[String]] = sentenceSplitter(text).map(tokenizer).toIndexedSeq
使用解析器
要使用解析器,需要反序列化一个解析器模型并传递已分割和标记化的文本。
val parser = epic.models.deserialize[Parser[AnnotatedLabel, String]](path)
val tree = parser(sentence)
println(tree.render(sentence))
使用POS标签器
使用POS标签器的方式与使用解析器类似。
val tagger = epic.models.deserialize[CRF[AnnotatedLabel, String]](path)
val tags = tagger.bestSequence(sentence)
println(tags.render)
使用命名实体识别
使用命名实体识别器的方式也与使用POS标签器类似。
val ner = epic.models.deserialize[SemiCRF[AnnotatedLabel, String]](path)
val segments = ner.bestSequence(sentence)
println(segments.render)
3. 项目API使用文档
Epic项目的API文档可以在其GitHub Wiki上找到。具体类和方法的详细信息可以在Epic API文档中查看。
4. 项目安装方式
如前所述,Epic项目的安装方式是通过SBT构建项目。确保安装了Java和SBT 0.13.2版本后,运行以下命令:
$ sbt assembly
这将构建一个包含所有依赖项的fatjar,可以用于运行Epic项目。
以上就是Epic项目的详细技术文档,希望对您有所帮助。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0289Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
164
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
952
560

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.01 K
396

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
407
387

React Native鸿蒙化仓库
C++
199
279

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0