Khan Academy Perseus 核心库7.1.0版本发布:用户输入类型安全与组件增强
Perseus是Khan Academy开发的一个开源数学题目渲染和交互引擎,它为在线教育平台提供了强大的题目展示和交互能力。作为Khan Academy技术栈的重要组成部分,Perseus能够处理各种复杂的数学表达式、图形交互和题目类型。
最新发布的7.1.0版本为Perseus核心库带来了两项重要改进:类型安全的用户输入解析器和Categorizer组件的无答案渲染支持。这些改进不仅增强了代码的健壮性,也为开发者提供了更好的开发体验。
类型安全的用户输入解析
在7.1.0版本中,开发团队为多个核心组件引入了类型安全的用户输入解析器。这些组件包括:
- 下拉选择框(Dropdown)
- 交互式图表(Interactive Graph)
- 数字输入框(Numeric Input)
- 表达式输入(Expression)
- 单选按钮(Radio)
这一改进使得开发者能够更安全地处理用户输入数据,减少运行时错误的可能性。特别值得注意的是,原先定义在@khanacademy/perseus-score中的Perseus<Widget>UserInput类型现在已经被迁移到了@khanacademy/perseus-core模块中。这意味着开发者需要更新他们的导入语句,从新的位置获取这些类型定义。
对于Radio组件,开发团队还特别修复了选项解析器的一个问题。现在解析器能够正确处理PerseusRadioChoice.widgets字段的null值,并将其转换为undefined,这提高了数据处理的灵活性。
Categorizer组件增强
Categorizer是一个允许用户将项目分类的交互组件。在7.1.0版本中,这个组件获得了无答案数据渲染的能力。这意味着:
- 组件现在可以在不提供预设答案的情况下正常渲染和工作
- 增加了相关的测试用例,确保功能的稳定性
- 补充了Storybook示例,方便开发者理解和使用这一特性
这项改进使得Categorizer组件更加灵活,能够适应更多样化的教学场景,比如当教师希望学生自由分类而不受预设答案限制时。
升级建议
对于正在使用Perseus库的开发者,建议尽快升级到7.1.0版本以利用这些改进。特别是:
- 检查项目中所有从
@khanacademy/perseus-score导入的用户输入类型,将它们更新为从@khanacademy/perseus-core导入 - 如果使用Categorizer组件,可以考虑重构代码以利用新的无答案渲染功能
- 对于Radio组件,现在可以更安全地处理widgets字段的null值
这些改进不仅提升了开发体验,也为最终用户带来了更稳定可靠的教育应用体验。Perseus团队持续关注教育技术的实际需求,通过这样的迭代更新,不断强化这个开源项目的价值。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00