Yggdrasil Decision Forests 项目教程
2024-09-26 22:36:06作者:平淮齐Percy
1. 项目的目录结构及介绍
Yggdrasil Decision Forests 项目的目录结构如下:
yggdrasil-decision-forests/
├── bazelignore
├── bazelrc
├── bazelversion
├── gitignore
├── CHANGELOG.md
├── CONTRIBUTING.md
├── LICENSE
├── README.md
├── WORKSPACE
├── WORKSPACE_NO_TF
├── WORKSPACE_WITH_TF
├── typos.toml
├── configure/
├── documentation/
├── examples/
├── third_party/
├── tools/
└── yggdrasil_decision_forests/
目录结构介绍
- bazelignore: Bazel 构建系统的忽略文件配置。
- bazelrc: Bazel 构建系统的配置文件。
- bazelversion: 指定 Bazel 的版本。
- gitignore: Git 版本控制系统的忽略文件配置。
- CHANGELOG.md: 项目变更日志。
- CONTRIBUTING.md: 贡献指南。
- LICENSE: 项目许可证(Apache-2.0)。
- README.md: 项目介绍和使用说明。
- WORKSPACE: Bazel 工作区文件。
- WORKSPACE_NO_TF: 不包含 TensorFlow 的 Bazel 工作区文件。
- WORKSPACE_WITH_TF: 包含 TensorFlow 的 Bazel 工作区文件。
- typos.toml: 拼写检查配置文件。
- configure/: 配置相关文件。
- documentation/: 项目文档。
- examples/: 示例代码。
- third_party/: 第三方依赖库。
- tools/: 项目工具。
- yggdrasil_decision_forests/: 核心代码库,包含决策森林模型的实现。
2. 项目的启动文件介绍
项目的启动文件主要是 README.md
和 examples/
目录下的示例代码。
README.md
README.md
文件是项目的入口文件,包含了项目的介绍、安装指南、使用示例和贡献指南。用户可以通过阅读该文件快速了解项目的基本信息和使用方法。
examples/
examples/
目录下包含了多个示例代码文件,展示了如何使用 Yggdrasil Decision Forests 库进行模型训练、评估和预测。例如:
examples/beginner.cc
: 使用 C++ API 进行模型训练的示例。examples/python_example.py
: 使用 Python API 进行模型训练的示例。
3. 项目的配置文件介绍
项目的配置文件主要包括 bazelrc
、WORKSPACE
和 typos.toml
。
bazelrc
bazelrc
文件是 Bazel 构建系统的配置文件,用于指定构建选项和环境变量。用户可以根据需要修改该文件以适应不同的构建环境。
WORKSPACE
WORKSPACE
文件是 Bazel 工作区文件,用于定义项目的依赖关系和外部依赖库。项目提供了三个不同的 WORKSPACE
文件:
- WORKSPACE: 默认的 Bazel 工作区文件。
- WORKSPACE_NO_TF: 不包含 TensorFlow 的 Bazel 工作区文件。
- WORKSPACE_WITH_TF: 包含 TensorFlow 的 Bazel 工作区文件。
用户可以根据需要选择合适的 WORKSPACE
文件进行项目构建。
typos.toml
typos.toml
文件是拼写检查工具的配置文件,用于指定拼写检查的规则和忽略的词汇。用户可以根据需要修改该文件以自定义拼写检查的行为。
通过以上内容,您可以快速了解 Yggdrasil Decision Forests 项目的目录结构、启动文件和配置文件,并开始使用该项目进行决策森林模型的训练和评估。
热门项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
825
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5