XTuner微调InternLM2模型时出现无限循环问题的分析与解决
2025-06-13 12:11:05作者:裴锟轩Denise
问题现象
在使用XTuner对InternLM2-7b-chat模型进行微调时,用户遇到了一个典型的问题:模型在对话过程中会出现无限循环输出,直到达到最大生成长度限制为止。具体表现为:
- 当用户输入"紫菜蛋花汤的做法"等食谱查询时,模型会先给出一个看似正常的回答
- 随后开始不断重复输出相同或类似的内容
- 在重复内容末尾经常出现"[UNUSED_TOKEN_145]"等特殊标记
- 循环会持续进行,直到达到模型的最大生成长度限制
问题根源分析
经过深入排查,发现该问题主要由以下几个因素共同导致:
-
XTuner版本与Tokenizer不匹配:用户最初使用的是XTuner 0.1.12版本,而InternLM2模型采用了新的Tokenizer配置,两者之间存在兼容性问题。
-
对话模板选择错误:在模型推理阶段,使用了不正确的对话模板参数(--prompt-template internlm_chat),而实际上应该使用internlm2_chat模板。
-
Tokenizer配置不完整:合并后的模型目录中,tokenizer_config.json文件缺少了InternLM2特有的特殊token定义和对话模板配置。
解决方案
针对上述问题根源,我们提出以下解决方案:
-
升级XTuner版本:
- 必须使用XTuner 0.1.13或更高版本
- 升级命令:
pip install -U xtuner
-
使用正确的对话模板:
- 在模型推理时确保使用正确的模板参数
- 正确命令:
xtuner chat ./merged --prompt-template internlm2_chat
-
更新Tokenizer配置:
- 确保使用最新的tokenizer_config.json文件
- 该文件应包含InternLM2特有的特殊token定义和对话模板配置
- 可以直接从原始模型目录复制,或在重新合并模型时自动更新
技术细节说明
InternLM2模型相比第一代模型,在Tokenizer方面做了重要改进:
- 新增了多个特殊token,如
<|im_start|>、<|im_end|>等,用于更好地处理对话场景 - 定义了专门的chat_template,规范了对话格式
- 移除了旧版本中的[UNUSED_TOKEN_*]这类临时标记
这些改进使得模型在对话任务中表现更好,但也带来了版本兼容性的要求。当使用旧版本的XTuner或错误的配置时,模型无法正确处理对话的开始和结束标记,导致输出失控。
最佳实践建议
为了避免类似问题,建议在微调InternLM2模型时遵循以下流程:
- 始终使用最新版本的XTuner
- 在训练和推理阶段保持对话模板一致
- 合并模型后检查tokenizer_config.json是否完整
- 对于关键配置参数,建议直接从原始模型目录复制
- 在微调前先进行小规模测试,验证配置的正确性
通过遵循这些实践,可以确保模型微调过程的顺利进行,并得到预期的对话效果。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 Python开发者的macOS终极指南:VSCode安装配置全攻略 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
220
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.83 K
React Native鸿蒙化仓库
JavaScript
259
322