Async-profiler 支持 PNS 风格火焰图的技术解析
2025-05-28 17:12:48作者:农烁颖Land
背景介绍
在 Java 应用性能分析领域,async-profiler 是一款广受欢迎的低开销性能分析工具。它能够以极低的性能开销采集 Java 应用的 CPU 使用情况、内存分配、锁竞争等信息,并生成直观的火焰图。然而,在某些特定场景下,特别是涉及 JVM 内部原生代码与 Java 代码混合调用的情况,传统的分析方式可能无法提供足够详细的调用栈信息。
PNS 风格火焰图的需求
在 JVM 的调试版本中,存在一个名为 pns 的调试函数,它能够提供比标准分析更详细的调用栈信息。这种分析方式特别适合以下场景:
- 类初始化死锁问题:当多个线程相互依赖对方持有的类初始化锁时
- JNI 调用链分析:需要查看 Java 代码与本地代码之间的完整调用关系
- JVM 内部机制研究:深入理解 JVM 运行时的工作机制
传统的 jstack 或 async-profiler 的默认分析模式会忽略原生调用栈中的非 Java 帧,这在分析复杂问题时可能丢失关键信息。
技术实现细节
async-profiler 通过 --cstack 参数提供了多种调用栈采集模式:
- fp 模式:基于帧指针的简单回溯,可能无法正确处理所有 JVM 内部调用
- vm 模式:专门为 JVM 设计的深度分析模式,能够识别 Java 调用和原生调用之间的转换
- dwarf 模式:使用 DWARF 调试信息进行更精确的栈回溯
在最新版本中,async-profiler 特别增强了对调试版 JVM 的支持,使得 cstack=vm 模式现在能够正确处理 slowdebug 构建的 JVM。这一改进使得工具能够:
- 准确识别
call_stub等关键 JVM 内部调用点 - 完整展示从 Java 代码到本地代码再回到 Java 代码的完整调用链
- 在类初始化死锁等复杂场景下提供更全面的分析视角
实际应用案例
以一个典型的类初始化死锁问题为例:
// 类Test1和Test2相互依赖对方的静态初始化
static class Test1 {
static {
Test2.test(); // 在初始化时调用Test2
}
public static void test() {}
}
static class Test2 {
static {
Test1.test(); // 在初始化时调用Test1
}
public static void test() {}
}
使用增强后的 async-profiler 进行分析时,开发者可以清晰地看到:
- 线程A阻塞在Test1的初始化过程中,等待Test2的初始化
- 线程B阻塞在Test2的初始化过程中,等待Test1的初始化
- 完整的JVM内部调用路径,包括类初始化机制、锁获取等关键环节
这种级别的详细信息对于诊断复杂的并发问题至关重要。
使用建议
对于需要进行深度 JVM 分析的用户,建议:
- 在分析类初始化问题或复杂 JNI 交互时,使用
--cstack=vm参数 - 对于调试版 JVM,确保使用最新版本的 async-profiler 以获得完整支持
- 结合传统 Java 栈分析和其他性能数据,获得更全面的视角
async-profiler 的这一增强功能为 JVM 开发者提供了更强大的分析工具,特别是在处理复杂的运行时问题时,能够提供传统工具无法提供的深入洞察。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137