SOFAArk 静态合并部署中 JSP 资源加载问题解析
问题背景
在 SOFAArk 框架下进行静态合并部署时,开发者可能会遇到模块 JSP 文件未被正确加载的问题。具体表现为模块启动时加载的资源目录指向基座工程而非模块自身,导致模块的 JSP 资源无法被访问。
问题分析
通过对 Spring Boot 和 SOFAArk 的调试分析,发现问题的根源在于资源加载机制:
-
资源目录定位问题:
ArkTomcatServletWebServerFactory在prepareContext方法中调用getValidDocumentRoot()时,默认获取的是基座工程的src/main/webapp目录资源文件,而非模块自身的资源目录。 -
类加载机制差异:在独立启动时,Spring Boot 能正确加载模块的 resources 目录;但在合并部署后,资源加载路径出现了偏差。
技术原理
SOFAArk 的静态合并部署模式下,模块和基座共享同一个 Tomcat 实例。这种架构带来了以下特性:
-
类加载隔离:SOFAArk 通过特殊的类加载器(
ArkTomcatEmbeddedWebappClassLoader)实现模块隔离。 -
资源加载机制:Spring Boot 默认的资源加载机制未完全适配 SOFAArk 的类加载体系,导致模块资源无法被正确识别。
解决方案
基础解决方案
修改 StaticResourceJars 类的 getUrls() 方法,使其兼容 SOFAArk 的类加载体系:
class StaticResourceJars {
List<URL> getUrls() {
// 改造原Spring Boot,兼容SOFAArk部署无法加载到模块的目录问题
ClassLoader classLoader = Thread.currentThread().getContextClassLoader();
if (classLoader instanceof ArkTomcatEmbeddedWebappClassLoader) {
classLoader = classLoader.getParent();
}
if (classLoader instanceof URLClassLoader) {
return getUrlsFrom(((URLClassLoader) classLoader).getURLs());
}
else {
return getUrlsFrom(Stream.of(ManagementFactory.getRuntimeMXBean()
.getClassPath().split(File.pathSeparator))
.map(this::toUrl).toArray(URL[]::new));
}
}
}
进阶解决方案
对于模块 JSP 依赖其他 JAR 包中资源的情况,还需要修改以下 Tomcat 相关类:
- JarFileUrlNestedJar:调整 JAR 文件资源加载逻辑
- JarWarResource:优化 WAR 包内资源处理
- JarWarResourceSet:完善资源集合管理
这些修改确保了模块不仅能够加载自身的 JSP 资源,还能访问依赖 JAR 包中的相关资源。
实现建议
-
定制化 Spring Boot Starter:建议将这些修改封装成定制的 Spring Boot Starter,便于在项目中统一管理。
-
版本兼容性:注意 Spring Boot 2.5.14 与 JDK 17 的兼容性问题,确保所有修改在不同环境下都能正常工作。
-
资源隔离策略:在 SOFAArk 环境下,明确基座与模块的资源加载优先级和隔离策略。
总结
SOFAArk 的静态合并部署为应用带来了诸多优势,但也带来了资源加载方面的新挑战。通过深入理解 SOFAArk 的类加载机制和 Spring Boot 的资源加载原理,开发者可以针对性地解决 JSP 资源加载问题。本文提供的解决方案不仅适用于当前问题,其思路也可应用于其他类似的资源加载场景。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00