SOFAArk 静态合并部署中 JSP 资源加载问题解析
问题背景
在 SOFAArk 框架下进行静态合并部署时,开发者可能会遇到模块 JSP 文件未被正确加载的问题。具体表现为模块启动时加载的资源目录指向基座工程而非模块自身,导致模块的 JSP 资源无法被访问。
问题分析
通过对 Spring Boot 和 SOFAArk 的调试分析,发现问题的根源在于资源加载机制:
-
资源目录定位问题:
ArkTomcatServletWebServerFactory在prepareContext方法中调用getValidDocumentRoot()时,默认获取的是基座工程的src/main/webapp目录资源文件,而非模块自身的资源目录。 -
类加载机制差异:在独立启动时,Spring Boot 能正确加载模块的 resources 目录;但在合并部署后,资源加载路径出现了偏差。
技术原理
SOFAArk 的静态合并部署模式下,模块和基座共享同一个 Tomcat 实例。这种架构带来了以下特性:
-
类加载隔离:SOFAArk 通过特殊的类加载器(
ArkTomcatEmbeddedWebappClassLoader)实现模块隔离。 -
资源加载机制:Spring Boot 默认的资源加载机制未完全适配 SOFAArk 的类加载体系,导致模块资源无法被正确识别。
解决方案
基础解决方案
修改 StaticResourceJars 类的 getUrls() 方法,使其兼容 SOFAArk 的类加载体系:
class StaticResourceJars {
List<URL> getUrls() {
// 改造原Spring Boot,兼容SOFAArk部署无法加载到模块的目录问题
ClassLoader classLoader = Thread.currentThread().getContextClassLoader();
if (classLoader instanceof ArkTomcatEmbeddedWebappClassLoader) {
classLoader = classLoader.getParent();
}
if (classLoader instanceof URLClassLoader) {
return getUrlsFrom(((URLClassLoader) classLoader).getURLs());
}
else {
return getUrlsFrom(Stream.of(ManagementFactory.getRuntimeMXBean()
.getClassPath().split(File.pathSeparator))
.map(this::toUrl).toArray(URL[]::new));
}
}
}
进阶解决方案
对于模块 JSP 依赖其他 JAR 包中资源的情况,还需要修改以下 Tomcat 相关类:
- JarFileUrlNestedJar:调整 JAR 文件资源加载逻辑
- JarWarResource:优化 WAR 包内资源处理
- JarWarResourceSet:完善资源集合管理
这些修改确保了模块不仅能够加载自身的 JSP 资源,还能访问依赖 JAR 包中的相关资源。
实现建议
-
定制化 Spring Boot Starter:建议将这些修改封装成定制的 Spring Boot Starter,便于在项目中统一管理。
-
版本兼容性:注意 Spring Boot 2.5.14 与 JDK 17 的兼容性问题,确保所有修改在不同环境下都能正常工作。
-
资源隔离策略:在 SOFAArk 环境下,明确基座与模块的资源加载优先级和隔离策略。
总结
SOFAArk 的静态合并部署为应用带来了诸多优势,但也带来了资源加载方面的新挑战。通过深入理解 SOFAArk 的类加载机制和 Spring Boot 的资源加载原理,开发者可以针对性地解决 JSP 资源加载问题。本文提供的解决方案不仅适用于当前问题,其思路也可应用于其他类似的资源加载场景。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00