Scala.js项目中的Wasm与JavaScript Promise集成技术解析
背景介绍
Scala.js作为将Scala代码编译为JavaScript的工具,近期在WebAssembly(Wasm)后端开发中取得重要进展。其中JavaScript Promise集成(JSPI)方案为Wasm带来了突破性的能力——允许Wasm代码同步调用返回Promise的JS函数,并在Promise未解决时挂起执行。这种能力相当于虚拟线程(又称绿色线程或协程),是纯JavaScript无法实现的功能。
JSPI的核心价值
JSPI为Wasm提供了独特的"超能力":它解决了传统异步编程中的"函数着色"问题。在传统异步编程中,函数必须明确标记为async,而JSPI允许任意深度的函数调用栈在Promise未解决时挂起,中间层的函数无需知道它们可能被挂起。这种机制使得每个函数都可以根据调用者的不同而表现出同步或异步行为。
技术实现方案
1. 挂起导入(Suspending Imports)
Scala.js提供了两种实现方案:
方案一:提供基础await
原语
def await[A](p: js.Promise[A]): A = throw new Error("stub")
底层实现为:
"await": new WebAssembly.Suspending((x) => x)
方案二:使用@JSImportSuspending
注解
@js.native
@JSImportSuspending("readFile", "node:fs")
def readFile(f: String, charset: String): String = js.native
2. 承诺导出(Promising Exports)
最初方案建议使用@JSExportPromising
注解,但后续发现更灵活的解决方案是提供suspendable
操作:
def suspendable[A](operation: => A): js.Promise[A] =
throw new Error("stub")
这种方式不强制开发者导出任何内容,同时保持API的简洁性。
实现挑战与解决方案
调用路径限制
在承诺导出和挂起导入之间的调用路径上不能有任何JavaScript帧。虽然这无法静态或动态检查,但运行时引擎会进行验证,违反条件时将导致不可捕获的trap。为解决这一问题,方案已修改为抛出可捕获的异常而非trap。
类型系统集成
为实现类型安全,可以考虑以下方案:
- 使用
scala.Function0
(但会使IR特定于Scala) - 使用
java.util.function.Supplier
- 在IR中添加
TypedClosure
支持
最佳实践建议
对于需要导出为Promise的函数,推荐模式为:
@JSExportTopLevel("myPromisingFunc")
def myPromisingFunc(x: Int): js.Promise[String] =
suspendable { myComputation(x) }
未来发展方向
随着JSPI进入标准化阶段,Scala.js团队计划:
- 完善
js.async
和js.await
API - 探索基于捕获检查的类型安全抽象
- 提供更高级的异步编程糖语法
总结
Scala.js通过JSPI集成,为Wasm后端带来了革命性的异步编程能力。这种技术不仅解决了传统异步编程的痛点,还为未来的并发编程模型开辟了新途径。开发者现在可以期待更简洁、更强大的异步编程体验,同时保持Scala类型系统的安全性。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0287Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









