FlagEmbedding项目BGE-M3模型预训练阶段技术解析
概述
FlagEmbedding项目中的BGE-M3模型是一个强大的通用文本嵌入模型,其训练过程分为三个阶段:第一阶段基于xlm-roberta和retrome架构,第二阶段使用大量无监督数据进行训练,第三阶段进行微调。本文将重点解析第二阶段无监督预训练的技术细节和实现方法。
无监督预训练数据准备
BGE-M3在无监督预训练阶段采用对比学习的方式,但与传统对比学习有所不同。该阶段的关键特点是:
-
负样本处理:模型默认设置train_group_size为1,仅使用in-batch negatives和cross device negatives,不主动使用hard negatives。这意味着在准备训练数据时,neg字段可以留空(但必须保留该字段结构)。
-
数据格式要求:训练数据应采用标准格式,包含query和pos两个必要字段。如果需要自定义train_group_size(如设置为2),可以考虑随机采样其他样本作为负样本填充neg字段。
训练参数配置
在实际训练过程中,针对不同长度的文本处理有以下建议:
-
统一长度处理:如果训练数据长度差异不大,可以直接使用统一的长度和batch_size配置进行训练,这是最简单直接的方法。
-
差异化处理:当训练数据长度差异较大时,可以采用更精细的处理方式:
- 首先使用数据分割脚本按文本长度对数据进行划分
- 为每个数据文件手动添加batch_size字段
- 在训练时开启same_dataset_within_batch选项,系统会自动加载各文件指定的batch_size
训练实现细节
BGE-M3的无监督预训练实现中,有几个关键技术点值得注意:
-
批次处理机制:模型通过same_dataset_within_batch选项实现了对不同长度数据的差异化批次处理,这能有效提升显存利用率。
-
负样本策略:相比有监督训练,无监督阶段的负样本生成更为简单,主要依赖批内负样本和设备间负样本,这降低了数据准备的复杂度。
-
模型初始化:无监督预训练阶段通常从第一阶段训练好的模型开始,继承其参数作为初始值。
实践建议
对于希望在BGE-M3基础上进行无监督预训练的开发者,建议:
- 优先收集高质量的query-pos对数据,确保正样本的相关性
- 根据硬件条件合理设置batch_size,显存不足时可考虑梯度累积
- 监控训练过程中的损失变化和嵌入质量,适时调整学习率
- 对于长文本场景,建议采用差异化处理策略以获得更好的训练效果
通过理解这些技术细节,开发者可以更有效地利用FlagEmbedding项目进行文本嵌入模型的预训练和优化。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0121AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









