YOSO-ai 开源项目教程
2026-01-17 09:05:20作者:翟江哲Frasier
项目介绍
YOSO-ai 是一个基于深度学习的实时全景分割项目,旨在通过单一模型实现快速且准确的全景分割。该项目由一支专业的研究团队开发,并在多个数据集上取得了优异的性能。YOSO-ai 的核心优势在于其高效的计算性能和优秀的分割结果,适用于各种实时应用场景。
项目快速启动
环境配置
首先,确保你的开发环境满足以下要求:
- Python 3.7 或更高版本
- CUDA 10.1 或更高版本(如果你使用 GPU)
- PyTorch 1.7 或更高版本
安装依赖
pip install -r requirements.txt
下载预训练模型
wget https://github.com/VinciGit00/YOSO-ai/releases/download/v1.0/yoso_res50_coco.pth
运行示例
以下是一个简单的示例代码,展示如何使用 YOSO-ai 进行图像分割:
import torch
from yoso import YOSOModel
# 加载预训练模型
model = YOSOModel.from_pretrained('yoso_res50_coco.pth')
# 读取图像
image = torch.randn(1, 3, 480, 640) # 示例图像
# 进行推理
with torch.no_grad():
outputs = model(image)
# 处理输出结果
predictions = outputs['pred_masks']
print(predictions)
应用案例和最佳实践
实时视频分割
YOSO-ai 可以应用于实时视频分割,提供流畅且准确的全景分割结果。以下是一个视频分割的示例代码:
import cv2
import torch
from yoso import YOSOModel
# 加载预训练模型
model = YOSOModel.from_pretrained('yoso_res50_coco.pth')
# 打开视频文件
cap = cv2.VideoCapture('input_video.mp4')
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# 预处理图像
image = torch.from_numpy(frame).permute(2, 0, 1).unsqueeze(0).float() / 255.0
# 进行推理
with torch.no_grad():
outputs = model(image)
# 处理输出结果
pred_masks = outputs['pred_masks']
# 显示结果
cv2.imshow('Segmentation', pred_masks[0].cpu().numpy())
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
最佳实践
- 数据预处理:确保输入图像的尺寸和格式符合模型要求。
- 模型优化:根据具体应用场景调整模型参数,以达到最佳性能。
- 多GPU训练:使用多GPU进行训练可以显著提高训练速度。
典型生态项目
Mask2Former
Mask2Former 是一个基于 Transformer 的分割模型,与 YOSO-ai 结合使用可以进一步提升分割性能。
K-Net
K-Net 是一个轻量级的分割网络,适用于资源受限的设备,与 YOSO-ai 结合可以实现高效的实时分割。
Detectron2
Detectron2 是 Facebook AI Research 开发的目标检测和分割框架,YOSO-ai 可以作为其插件使用,扩展其功能。
通过以上模块的介绍和示例代码,你可以快速上手并应用 YOSO-ai 项目,实现高效的全景分割。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
289
340
Ascend Extension for PyTorch
Python
290
321
暂无简介
Dart
730
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
245
105
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
450
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言运行时与标准库。
Cangjie
149
885