Microsoft Olive项目中日志收集机制的技术解析
2025-07-07 11:06:50作者:宣利权Counsellor
在机器学习模型优化工具Microsoft Olive的实际应用中,开发者经常需要收集和分析各个处理阶段产生的日志信息。本文将深入探讨Olive框架中的日志收集机制,特别是针对特定处理步骤(pass)的日志获取方法。
Olive日志系统架构
Olive的日志系统基于Python标准库的logging模块构建,采用分层设计。顶层日志记录器命名为"olive",开发者可以通过标准logging接口注册自定义处理器来捕获框架输出的日志信息。
import logging
olive_logger = logging.getLogger('olive')
olive_logger.addHandler(MyCustomHandler())
这种基础配置能够捕获Olive框架本身产生的日志,但对于某些特定场景可能不够全面。
第三方组件日志收集挑战
在模型优化过程中,Olive会调用多种第三方组件,如ONNXRuntime的量化器(QDQQuantizer)。这些组件通常有自己的日志系统,不会自动集成到Olive的主日志流中。例如,当使用OnnxStaticQuantization等量化处理步骤时,ONNXRuntime内部产生的详细量化信息默认不会通过Olive日志系统输出。
解决方案与实践
要获取完整的处理日志,特别是来自ONNXRuntime等组件的输出,开发者需要额外配置:
-
调整ONNXRuntime日志级别:通过设置ort_log_severity_level参数控制ONNXRuntime的日志详细程度。该参数支持以下级别:
- 3:仅错误信息(默认)
- 2:警告信息
- 1:详细信息
- 0:全部信息
-
集成多源日志:对于复杂的优化流程,建议构建统一的日志收集系统,整合来自Olive框架、各处理步骤以及第三方组件的所有输出。
最佳实践建议
- 在开发调试阶段,将ort_log_severity_level设为1或0以获得详细日志
- 生产环境中可根据需要调整日志级别,平衡信息详细度和性能
- 考虑使用日志聚合工具处理大规模分布式优化任务产生的日志
- 为关键处理步骤添加自定义日志标记,便于后续分析
通过合理配置Olive的日志系统,开发者能够全面监控模型优化流程,快速定位问题,并深入理解各优化步骤的具体行为。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0113
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
486
3.6 K
Ascend Extension for PyTorch
Python
297
330
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
262
112
暂无简介
Dart
735
177
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
863
458
React Native鸿蒙化仓库
JavaScript
294
343
仓颉编译器源码及 cjdb 调试工具。
C++
148
880