MicroK8s节点Not Ready问题排查:NO_PROXY配置缺失导致的"invalid capacity 0"错误
在Kubernetes集群部署过程中,节点状态异常是常见问题之一。近期在MicroK8s项目中,用户反馈了一个典型的节点Not Ready问题,表面现象是kubelet报出"invalid capacity 0 on image filesystem"错误,但实际原因却与网络代理配置相关。本文将深入分析这一问题的技术背景、排查思路和解决方案。
问题现象
当用户使用MicroK8s部署Kubernetes集群时,节点状态持续显示为"Not Ready"。通过kubectl describe node命令查看节点详情时,发现以下关键错误信息:
Warning InvalidDiskCapacity 116s kubelet invalid capacity 0 on image filesystem
Conditions:
Ready False KubeletNotReady container runtime network not ready: NetworkReady=false reason:NetworkPluginNotReady message:Network plugin returns error: cni plugin not initialized
同时,MicroK8s服务状态显示为"microk8s is not running"。表面看来,这似乎是一个磁盘容量或文件系统问题,但实际排查后发现是网络代理配置不当导致的。
技术背景分析
在Kubernetes节点初始化过程中,kubelet需要与容器运行时(如containerd)和CNI插件进行通信。当系统配置了HTTP/HTTPS代理(HTTP_PROXY/HTTPS_PROXY)但未正确设置NO_PROXY时,会导致以下问题:
- kubelet无法与本地服务通信,包括容器运行时和CNI插件
- 容器网络插件(CNI)初始化失败,导致节点网络未就绪
- 磁盘容量检测异常,报出误导性的"invalid capacity 0"错误
这种错误表象与实际原因不符的情况,在分布式系统中较为常见,增加了问题排查的难度。
解决方案
正确的解决方法是配置系统的NO_PROXY环境变量,确保本地流量不经过代理。具体操作如下:
- 编辑系统环境变量配置文件:
sudo nano /etc/environment
- 添加以下内容(根据实际网络环境调整):
NO_PROXY=10.0.0.0/8,192.168.0.0/16,127.0.0.1,172.16.0.0/16,.svc,localhost
no_proxy=10.0.0.0/8,192.168.0.0/16,127.0.0.1,172.16.0.0/16,.svc,localhost
- 使配置生效:
source /etc/environment
- 重启MicroK8s服务:
sudo systemctl restart snap.microk8s.daemon-kubelet
最佳实践建议
为避免类似问题,建议在部署MicroK8s或其他Kubernetes发行版前:
- 检查系统代理设置,确保HTTP_PROXY/HTTPS_PROXY和NO_PROXY成对配置
- NO_PROXY应至少包含以下内容:
- 本地回环地址(127.0.0.1, localhost)
- 集群内部IP段(10.0.0.0/8, 192.168.0.0/16, 172.16.0.0/12)
- Kubernetes服务域名(.svc)
- 对于生产环境,建议在系统级(/etc/environment)而非用户级配置这些环境变量
问题排查方法论
当遇到节点Not Ready问题时,建议按照以下步骤排查:
- 检查kubelet日志:
journalctl -u snap.microk8s.daemon-kubelet -f - 查看节点详细状态:
kubectl describe node <node-name> - 验证网络连通性,特别是到容器运行时和CNI插件的连接
- 检查基础资源(CPU、内存、磁盘)是否充足
- 确认系统配置(如代理、防火墙等)不会影响集群组件间通信
通过系统化的排查方法,可以快速定位问题根源,避免被表面现象误导。
总结
MicroK8s节点Not Ready问题往往有多种可能原因,本例展示了网络代理配置不当可能导致磁盘容量检测异常的典型案例。这提醒我们在Kubernetes运维中,需要全面考虑系统配置对各个组件的影响,建立系统化的排查思路。正确配置NO_PROXY不仅是解决当前问题的关键,也是Kubernetes集群稳定运行的基础保障。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00