Django Fixture Magic 使用与技术文档
1. 安装指南
环境要求
在开始安装前,请确保您的系统满足以下环境要求:
- Python 2.7 或 Python 3.6
- Django 版本在 1.8 到 2.1 之间
安装步骤
安装 Django Fixture Magic 最简单的方式是使用 pip 工具:
pip install django-fixture-magic
如果您需要安装开发版本的 Django Fixture Magic,可以使用以下命令:
pip install -e git://github.com/davedash/django-fixture-magic#egg=fixture-magic
对于 Python 3 用户,需要额外安装 future
包:
pip install future
安装完成后,需要在 Django 项目的 settings.py
文件中将 fixture_magic
添加到 INSTALLED_APPS
中:
INSTALLED_APPS = (
...
'fixture_magic',
...
)
2. 项目的使用说明
Django Fixture Magic 提供了四个命令行工具来帮助您管理和使用 fixtures。
dump_object
dump_object
命令可以导出指定模型的 JSON 表示,包括所有依赖对象(通过外键定义):
./manage.py dump_object APP.MODEL PK1 PK2 PK3 ... > my_new_fixture.json
或者,您可以传入一个查询参数来导出匹配的对象:
./manage.py dump_object APP.MODEL --query '{"pk__in": [PK1, PK2, PK3]}' > my_new_fixture.json
如果您想导出所有对象及其依赖,可以使用星号:
./manage.py dump_object APP.MODEL '*' > my_new_fixture.json
默认情况下,dump_object
会导出与模型相关联的 fixtures。如果您想禁用此功能,可以使用 --no-follow
选项。
merge_fixtures
merge_fixtures
命令用于合并多个 fixtures 文件,移除重复数据:
./manage.py merge_fixtures fixture1.json fixture2.json fixture3.json ... > all_my_fixtures.json
reorder_fixtures
reorder_fixtures
命令可以重新排序 fixtures 文件中的模型顺序,以避免外键错误:
./manage.py reorder_fixtures fixture.json APP1.MODEL1 APP2.MODEL2 ... > ordered_fixture.json
未指定的模型将被追加到文件末尾。
custom_dump
custom_dump
命令通过读取 CUSTOM_DUMPS
设置来导出模型数据,它允许您自定义导出哪些属性或方法:
CUSTOM_DUMPS = {
'addon': {
'primary': 'addons.addon',
'dependents': [
'current_version',
'current_version.files.all.0',
],
'order': ('app1.model1', 'app2.model2',),
'order_cond': {
'app1.model1': lambda x: 1 if x.get('fields').get('parent_model1') else 0,
'app2.model2': lambda x: -1 * x.get('pk'),
},
}
}
然后使用以下命令来执行 custom_dump
:
./manage.py custom_dump addon id
3. 项目API使用文档
Django Fixture Magic 的 API 使用主要是围绕上述命令行工具进行的。详细的 API 文档可以在官方 GitHub 仓库的 wiki 页面中找到。
4. 项目安装方式
项目的安装方式已在“安装指南”部分详细说明,主要通过 pip 进行安装。如果需要安装特定版本或者开发版本,可以通过指定 GitHub 仓库地址来进行安装。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~055CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0380- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









