扩散策略革命:如何用AI扩散模型实现机器人智能决策
2026-01-14 18:24:22作者:胡唯隽
扩散策略(Diffusion Policy)是一种创新的机器人视觉运动策略学习方法,它通过将扩散模型应用于动作空间,为机器人决策带来了突破性的进展。这个开源项目展示了如何利用扩散过程的强大表达能力,让机器人在复杂环境中实现更智能、更灵活的行为控制。🚀
什么是扩散策略?
扩散策略的核心思想是将传统的动作生成问题转化为扩散过程。就像艺术家从粗糙的草图开始,逐步细化到精美的画作一样,扩散策略从随机噪声开始,通过多次迭代去噪过程,最终生成精确的动作序列。
从图中可以看到,扩散策略(右)通过渐进式采样和能量场优化,在复杂环境中展现出卓越的路径规划能力。
扩散策略的独特优势
🎯 多模态动作生成
扩散策略能够同时探索多种可能的动作路径,这在传统方法中很难实现。当面对复杂任务时,机器人需要从多个可行方案中选择最优解,这正是扩散策略的强项。
🔄 渐进式优化
通过多次迭代的去噪过程,扩散策略能够逐步优化动作序列,确保最终输出的动作既安全又高效。
🛡️ 抗干扰能力强
由于扩散过程本身就包含噪声处理机制,扩散策略对传感器噪声和环境变化具有天然的鲁棒性。
项目架构概览
这个项目的代码结构设计得非常优雅,实现了任务和方法的解耦:
- 数据集模块:diffusion_policy/dataset/ - 处理各种机器人任务数据
- 策略模块:diffusion_policy/policy/ - 实现不同的决策算法
- 环境运行器:diffusion_policy/env_runner/ - 执行策略并收集性能指标
性能对比展示
这张对比图清晰地展示了扩散策略相对于其他方法的优势。在相同的模拟环境中,扩散策略(左一)生成的轨迹更加平滑连贯,几乎没有无效运动。
快速开始指南
环境配置
项目提供了完整的conda环境配置:
mamba env create -f conda_environment.yaml
训练你的第一个策略
使用预配置的训练工作空间快速上手:
python train.py --config-name=train_diffusion_unet_lowdim_workspace
实际应用场景
扩散策略已经在多个机器人任务中证明了自己的价值:
- 推T任务:精确控制机器人完成推T操作
- 方块推动:在复杂环境中推动方块到目标位置
- 厨房任务:执行复杂的厨房操作序列
为什么选择扩散策略?
- 更高的成功率:在复杂任务中表现优于传统方法
- 更好的泛化能力:能够适应环境的变化
- 更自然的动作:生成的动作序列更加平滑自然
未来发展方向
扩散策略代表了机器人决策领域的一个重要突破。随着扩散模型的不断发展,我们可以期待:
- 更高效的训练算法
- 更复杂的任务处理能力
- 真实世界中的广泛应用
结语
扩散策略为机器人智能决策开辟了新的可能性。通过将扩散模型的强大表达能力引入动作空间,我们能够让机器人在复杂环境中表现得更加智能和灵活。
无论你是机器人领域的研究人员还是工程师,这个项目都值得你深入探索。开始你的扩散策略之旅,体验AI驱动的机器人决策的魅力!✨
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.54 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
93
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
724
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19

