深入理解梯度优化:基于ericmjl/dl-workshop的实践指南
2025-07-04 12:19:19作者:霍妲思
引言
在机器学习和深度学习中,梯度优化是最核心的概念之一。本文将通过一个简单的多项式函数优化示例,带领读者从零开始理解梯度优化的基本原理和实现方法。我们将从数学推导和代码实现两个角度,完整展示梯度下降算法的运作机制。
基础概念:导数与优化
导数定义
导数是微积分中最基本的概念之一,它描述了函数在某一点处的变化率。对于函数f(w),其导数f'(w)可以理解为:
当输入w发生微小变化时,输出f(w)的变化量与输入变化量的比值,在变化量趋近于0时的极限值。
示例函数分析
我们以二次函数为例:
其导数为:
解析法求极值
根据微积分知识,函数的极值点(最小值或最大值)出现在导数为0的位置。因此我们可以通过解方程f'(w)=0来找到极值点:
为了确定这是最小值还是最大值,我们需要考察二阶导数:
由于f''(w)恒为正,说明该极值点是一个局部最小值。
计算法实现梯度优化
梯度下降原理
虽然解析法可以直接求出极值点,但对于复杂函数往往难以解析求解。梯度下降提供了一种数值计算方法:
- 随机初始化参数w
- 计算当前点的梯度f'(w)
- 沿负梯度方向更新w:w = w - η·f'(w),其中η是学习率
- 重复步骤2-3直到收敛
代码实现
首先定义目标函数和其梯度函数:
def f(w):
return w**2 + 3*w - 5
def df(w):
return 2*w + 3
然后实现梯度下降过程:
w = 10.0 # 初始值
learning_rate = 0.01 # 学习率
for i in range(1000):
w = w - df(w) * learning_rate
print("优化结果:", w)
运行后可以看到w收敛到-1.5附近,与解析解一致。
关键参数说明
- 学习率(η):控制每次更新的步长
- 过大可能导致震荡甚至发散
- 过小会导致收敛速度慢
- 迭代次数:需要足够使算法收敛
- 初始值:影响收敛路径,但不影响凸函数的最终结果
使用JAX自动微分
手动计算梯度对于复杂函数可能很困难。JAX提供了自动微分功能,可以自动计算任意函数的梯度:
from jax import grad
df = grad(f) # 自动计算f的梯度
w = -10.0
for i in range(1000):
w = w - df(w) * 0.01
print(w)
自动微分的优势:
- 无需手动推导梯度公式
- 支持复杂函数的梯度计算
- 可以利用链式法则处理复合函数
实际应用中的注意事项
- 学习率选择:通常需要实验确定,可以尝试0.1, 0.01, 0.001等
- 收敛判断:可以设置梯度阈值或损失变化阈值作为停止条件
- 批量处理:对于大数据集,可以使用随机梯度下降(SGD)或小批量梯度下降
- 动量优化:可以引入动量项加速收敛并减少震荡
总结
本文通过一个简单的多项式优化问题,详细介绍了梯度下降算法的原理和实现。关键点包括:
- 梯度指示了函数增长最快的方向
- 负梯度方向是函数下降最快的方向
- 通过迭代更新可以逐步逼近极值点
- 自动微分工具大大简化了梯度计算
理解这些基础概念对于后续学习更复杂的机器学习模型优化至关重要。梯度下降算法虽然简单,但它是深度学习乃至整个机器学习领域最重要的优化方法之一。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00HunyuanWorld-Mirror
混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
237
2.36 K

仓颉编程语言运行时与标准库。
Cangjie
122
95

暂无简介
Dart
538
117

仓颉编译器源码及 cjdb 调试工具。
C++
114
83

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
77
109

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
995
588

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
568
113

LLVM 项目是一个模块化、可复用的编译器及工具链技术的集合。此fork用于添加仓颉编译器的功能,并支持仓颉编译器项目。
C++
32
25