在jQuery-QueryBuilder中为规则组添加自定义权重字段
jQuery-QueryBuilder是一个强大的jQuery插件,用于创建复杂的查询条件界面。在实际应用中,我们经常需要为规则组添加额外的自定义字段来满足特定业务需求。本文将详细介绍如何为规则组添加权重字段并实现数据的存储与读取。
需求背景
在许多业务场景中,我们需要为不同的规则组分配不同的权重值。例如在搜索系统中,某些条件组合可能比其他组合更重要;在评分系统中,不同规则组可能对最终得分有不同的影响比例。
实现方案
1. 存储权重值
首先,我们需要一个全局对象来存储各个规则组的权重值:
let ruleGroupWeights = {};
const weightChanged = (value, levelId) => {
ruleGroupWeights[levelId] = value;
};
这里使用一个对象ruleGroupWeights来保存权重值,键是规则组的层级ID,值是对应的权重数值。weightChanged函数用于在权重值变化时更新存储。
2. 修改组模板
接下来,我们需要修改规则组的模板,添加权重输入框:
templates: {
group: ({group_id, level, conditions, icons, settings, translate, builder}) => {
return `<div id="${group_id}" class="rules-group-container">
<div class="rules-group-header">
<div class="btn-group float-end group-actions">
<input type="number" step="0.01" id="${group_id}_weight" name="${group_id}_weight" onchange="weightChanged(this.value, ${level})"/>
<button type="button" class="btn btn-sm btn-success" data-add="rule">
...
在组模板中添加了一个数字输入框,类型为number,步长为0.01以支持小数权重。当值变化时,调用weightChanged函数更新存储。
3. 获取规则时处理权重
最后,在获取规则时,我们需要将存储的权重值添加到规则对象中:
$('#btn-get').on('click', function () {
const result = $('#dateRuleBuilder').queryBuilder('getRules');
function populateWeights(result, level = 1) {
if (result.hasOwnProperty('condition')) {
result.weight = ruleGroupWeights[level];
if (result.hasOwnProperty('rules')) {
for (const rule in result.rules) {
populateWeights(result.rules[rule], level + 1);
}
}
}
}
populateWeights(result);
if (!$.isEmptyObject(result)) {
console.log(JSON.stringify(result, null, 2));
}
});
populateWeights函数递归遍历规则树,为每个规则组添加对应的权重值。level参数表示当前规则组的层级,从1开始递增。
技术要点
-
数据存储:使用全局对象存储权重值,确保在页面生命周期内数据不丢失。
-
模板定制:通过修改组模板添加自定义字段,保持UI一致性。
-
递归处理:使用递归函数处理嵌套的规则结构,确保所有层级的规则组都能正确获取权重值。
-
事件绑定:通过onchange事件实时更新权重值,保证数据同步。
扩展思考
这种模式可以扩展到其他自定义字段的添加,例如:
- 为规则组添加优先级字段
- 添加生效时间范围
- 添加说明文本等
只需要修改模板添加相应字段,并在获取规则时处理这些字段即可。这种灵活性使得jQuery-QueryBuilder能够适应各种复杂的业务场景需求。
总结
通过本文介绍的方法,我们成功实现了为jQuery-QueryBuilder的规则组添加权重字段的功能。这种方案具有以下优点:
- 非侵入式修改,不影响原有功能
- 实现简单,易于理解和维护
- 可扩展性强,可以方便地添加其他自定义字段
希望本文能为需要在jQuery-QueryBuilder中添加自定义字段的开发者提供有价值的参考。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00