在jQuery-QueryBuilder中为规则组添加自定义权重字段
jQuery-QueryBuilder是一个强大的jQuery插件,用于创建复杂的查询条件界面。在实际应用中,我们经常需要为规则组添加额外的自定义字段来满足特定业务需求。本文将详细介绍如何为规则组添加权重字段并实现数据的存储与读取。
需求背景
在许多业务场景中,我们需要为不同的规则组分配不同的权重值。例如在搜索系统中,某些条件组合可能比其他组合更重要;在评分系统中,不同规则组可能对最终得分有不同的影响比例。
实现方案
1. 存储权重值
首先,我们需要一个全局对象来存储各个规则组的权重值:
let ruleGroupWeights = {};
const weightChanged = (value, levelId) => {
ruleGroupWeights[levelId] = value;
};
这里使用一个对象ruleGroupWeights
来保存权重值,键是规则组的层级ID,值是对应的权重数值。weightChanged
函数用于在权重值变化时更新存储。
2. 修改组模板
接下来,我们需要修改规则组的模板,添加权重输入框:
templates: {
group: ({group_id, level, conditions, icons, settings, translate, builder}) => {
return `<div id="${group_id}" class="rules-group-container">
<div class="rules-group-header">
<div class="btn-group float-end group-actions">
<input type="number" step="0.01" id="${group_id}_weight" name="${group_id}_weight" onchange="weightChanged(this.value, ${level})"/>
<button type="button" class="btn btn-sm btn-success" data-add="rule">
...
在组模板中添加了一个数字输入框,类型为number
,步长为0.01以支持小数权重。当值变化时,调用weightChanged
函数更新存储。
3. 获取规则时处理权重
最后,在获取规则时,我们需要将存储的权重值添加到规则对象中:
$('#btn-get').on('click', function () {
const result = $('#dateRuleBuilder').queryBuilder('getRules');
function populateWeights(result, level = 1) {
if (result.hasOwnProperty('condition')) {
result.weight = ruleGroupWeights[level];
if (result.hasOwnProperty('rules')) {
for (const rule in result.rules) {
populateWeights(result.rules[rule], level + 1);
}
}
}
}
populateWeights(result);
if (!$.isEmptyObject(result)) {
console.log(JSON.stringify(result, null, 2));
}
});
populateWeights
函数递归遍历规则树,为每个规则组添加对应的权重值。level参数表示当前规则组的层级,从1开始递增。
技术要点
-
数据存储:使用全局对象存储权重值,确保在页面生命周期内数据不丢失。
-
模板定制:通过修改组模板添加自定义字段,保持UI一致性。
-
递归处理:使用递归函数处理嵌套的规则结构,确保所有层级的规则组都能正确获取权重值。
-
事件绑定:通过onchange事件实时更新权重值,保证数据同步。
扩展思考
这种模式可以扩展到其他自定义字段的添加,例如:
- 为规则组添加优先级字段
- 添加生效时间范围
- 添加说明文本等
只需要修改模板添加相应字段,并在获取规则时处理这些字段即可。这种灵活性使得jQuery-QueryBuilder能够适应各种复杂的业务场景需求。
总结
通过本文介绍的方法,我们成功实现了为jQuery-QueryBuilder的规则组添加权重字段的功能。这种方案具有以下优点:
- 非侵入式修改,不影响原有功能
- 实现简单,易于理解和维护
- 可扩展性强,可以方便地添加其他自定义字段
希望本文能为需要在jQuery-QueryBuilder中添加自定义字段的开发者提供有价值的参考。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava02GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0287- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









