Kometa项目中正则表达式标签属性过滤问题的分析与修复
问题背景
在Kometa项目的1.20.0-nightly43版本中,发现了一个关于正则表达式(Regex)在标签属性过滤中的实现问题。该问题影响了两种主要场景:标签名称的正则过滤和语言名称的正则过滤。
问题详细描述
标签名称正则过滤问题
当用户尝试使用正则表达式过滤标签名称时,系统错误地将标签ID而非标签名称用于匹配。例如,当用户配置如下过滤器:
filters:
- label.regex: '(?i)Language.*'
系统内部生成的过滤器会使用标签ID(如191386)来匹配标签名称(如"Language_test"),这显然会导致匹配失败。
语言名称正则过滤问题
在语言过滤场景中,系统错误地将三字母语言代码(如'ja')与完整语言名称(如'Japanese')和三字母代码(如'jpn')进行匹配。例如配置:
filters:
- audio_language.regex: '(?i)\bJapanese\b'
系统会生成基于'ja'的过滤器,然后尝试匹配'Japanese'和'jpn',由于大小写敏感和模式不匹配,导致过滤失败。
问题根源分析
通过代码审查发现,问题主要出在builder.py文件的第2648-2652行。在这段代码中,系统在处理正则表达式过滤时,错误地将键(key)而非名称(name)添加到了有效列表中。这导致后续过滤操作使用了错误的属性值进行匹配。
解决方案
核心修复方案
修改builder.py中的相关代码,确保使用名称(name)而非键(key)进行正则匹配。具体修改如下:
原代码:
for reg in util.validate_regex(data, self.Type, validate=validate):
for name, key in names:
if name not in used and re.compile(reg).search(name):
used.append(name)
valid_list.append((name, key) if plex_search else key)
修改后代码:
for reg in util.validate_regex(data, self.Type, validate=validate):
for name, key in names:
if name not in used and re.compile(reg).search(name):
used.append(name)
valid_list.append((name, key) if plex_search else name)
性能优化建议
进一步分析发现,在语言过滤场景中,系统不必要地检查了三字母语言代码。由于常规过滤(非正则)仅检查完整语言名称,可以移除对languageCode的检查,减少50%的搜索量。
修改plex.py中的相关代码:
原代码:
if filter_attr == "audio_language":
for a in part.audioStreams():
attrs.extend([a.language, a.languageCode])
if filter_attr == "subtitle_language":
for s in part.subtitleStreams():
attrs.extend([s.language, s.languageCode])
优化后代码:
if filter_attr == "audio_language":
for a in part.audioStreams():
attrs.extend([a.language])
if filter_attr == "subtitle_language":
for s in part.subtitleStreams():
attrs.extend([s.language])
影响评估
经过全面测试,这些修改不会破坏现有功能,同时能够正确解决正则表达式过滤问题。修改后的代码在完整库测试中表现正常,不会影响分辨率或其他标签的处理。
技术要点总结
- 正则表达式过滤应始终针对显示名称而非内部ID或代码
- 语言过滤场景中,三字母代码检查是不必要的冗余操作
- 正确的属性选择是确保过滤准确性的关键
- 性能优化可以在不影响功能的前提下减少不必要的计算
这些修改显著提升了Kometa项目中正则表达式过滤的准确性和效率,为用户提供了更可靠的媒体库管理体验。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00