Kometa项目中正则表达式标签属性过滤问题的分析与修复
问题背景
在Kometa项目的1.20.0-nightly43版本中,发现了一个关于正则表达式(Regex)在标签属性过滤中的实现问题。该问题影响了两种主要场景:标签名称的正则过滤和语言名称的正则过滤。
问题详细描述
标签名称正则过滤问题
当用户尝试使用正则表达式过滤标签名称时,系统错误地将标签ID而非标签名称用于匹配。例如,当用户配置如下过滤器:
filters:
- label.regex: '(?i)Language.*'
系统内部生成的过滤器会使用标签ID(如191386)来匹配标签名称(如"Language_test"),这显然会导致匹配失败。
语言名称正则过滤问题
在语言过滤场景中,系统错误地将三字母语言代码(如'ja')与完整语言名称(如'Japanese')和三字母代码(如'jpn')进行匹配。例如配置:
filters:
- audio_language.regex: '(?i)\bJapanese\b'
系统会生成基于'ja'的过滤器,然后尝试匹配'Japanese'和'jpn',由于大小写敏感和模式不匹配,导致过滤失败。
问题根源分析
通过代码审查发现,问题主要出在builder.py文件的第2648-2652行。在这段代码中,系统在处理正则表达式过滤时,错误地将键(key)而非名称(name)添加到了有效列表中。这导致后续过滤操作使用了错误的属性值进行匹配。
解决方案
核心修复方案
修改builder.py中的相关代码,确保使用名称(name)而非键(key)进行正则匹配。具体修改如下:
原代码:
for reg in util.validate_regex(data, self.Type, validate=validate):
for name, key in names:
if name not in used and re.compile(reg).search(name):
used.append(name)
valid_list.append((name, key) if plex_search else key)
修改后代码:
for reg in util.validate_regex(data, self.Type, validate=validate):
for name, key in names:
if name not in used and re.compile(reg).search(name):
used.append(name)
valid_list.append((name, key) if plex_search else name)
性能优化建议
进一步分析发现,在语言过滤场景中,系统不必要地检查了三字母语言代码。由于常规过滤(非正则)仅检查完整语言名称,可以移除对languageCode的检查,减少50%的搜索量。
修改plex.py中的相关代码:
原代码:
if filter_attr == "audio_language":
for a in part.audioStreams():
attrs.extend([a.language, a.languageCode])
if filter_attr == "subtitle_language":
for s in part.subtitleStreams():
attrs.extend([s.language, s.languageCode])
优化后代码:
if filter_attr == "audio_language":
for a in part.audioStreams():
attrs.extend([a.language])
if filter_attr == "subtitle_language":
for s in part.subtitleStreams():
attrs.extend([s.language])
影响评估
经过全面测试,这些修改不会破坏现有功能,同时能够正确解决正则表达式过滤问题。修改后的代码在完整库测试中表现正常,不会影响分辨率或其他标签的处理。
技术要点总结
- 正则表达式过滤应始终针对显示名称而非内部ID或代码
- 语言过滤场景中,三字母代码检查是不必要的冗余操作
- 正确的属性选择是确保过滤准确性的关键
- 性能优化可以在不影响功能的前提下减少不必要的计算
这些修改显著提升了Kometa项目中正则表达式过滤的准确性和效率,为用户提供了更可靠的媒体库管理体验。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









