Kometa项目中正则表达式标签属性过滤问题的分析与修复
问题背景
在Kometa项目的1.20.0-nightly43版本中,发现了一个关于正则表达式(Regex)在标签属性过滤中的实现问题。该问题影响了两种主要场景:标签名称的正则过滤和语言名称的正则过滤。
问题详细描述
标签名称正则过滤问题
当用户尝试使用正则表达式过滤标签名称时,系统错误地将标签ID而非标签名称用于匹配。例如,当用户配置如下过滤器:
filters:
- label.regex: '(?i)Language.*'
系统内部生成的过滤器会使用标签ID(如191386)来匹配标签名称(如"Language_test"),这显然会导致匹配失败。
语言名称正则过滤问题
在语言过滤场景中,系统错误地将三字母语言代码(如'ja')与完整语言名称(如'Japanese')和三字母代码(如'jpn')进行匹配。例如配置:
filters:
- audio_language.regex: '(?i)\bJapanese\b'
系统会生成基于'ja'的过滤器,然后尝试匹配'Japanese'和'jpn',由于大小写敏感和模式不匹配,导致过滤失败。
问题根源分析
通过代码审查发现,问题主要出在builder.py文件的第2648-2652行。在这段代码中,系统在处理正则表达式过滤时,错误地将键(key)而非名称(name)添加到了有效列表中。这导致后续过滤操作使用了错误的属性值进行匹配。
解决方案
核心修复方案
修改builder.py中的相关代码,确保使用名称(name)而非键(key)进行正则匹配。具体修改如下:
原代码:
for reg in util.validate_regex(data, self.Type, validate=validate):
for name, key in names:
if name not in used and re.compile(reg).search(name):
used.append(name)
valid_list.append((name, key) if plex_search else key)
修改后代码:
for reg in util.validate_regex(data, self.Type, validate=validate):
for name, key in names:
if name not in used and re.compile(reg).search(name):
used.append(name)
valid_list.append((name, key) if plex_search else name)
性能优化建议
进一步分析发现,在语言过滤场景中,系统不必要地检查了三字母语言代码。由于常规过滤(非正则)仅检查完整语言名称,可以移除对languageCode的检查,减少50%的搜索量。
修改plex.py中的相关代码:
原代码:
if filter_attr == "audio_language":
for a in part.audioStreams():
attrs.extend([a.language, a.languageCode])
if filter_attr == "subtitle_language":
for s in part.subtitleStreams():
attrs.extend([s.language, s.languageCode])
优化后代码:
if filter_attr == "audio_language":
for a in part.audioStreams():
attrs.extend([a.language])
if filter_attr == "subtitle_language":
for s in part.subtitleStreams():
attrs.extend([s.language])
影响评估
经过全面测试,这些修改不会破坏现有功能,同时能够正确解决正则表达式过滤问题。修改后的代码在完整库测试中表现正常,不会影响分辨率或其他标签的处理。
技术要点总结
- 正则表达式过滤应始终针对显示名称而非内部ID或代码
- 语言过滤场景中,三字母代码检查是不必要的冗余操作
- 正确的属性选择是确保过滤准确性的关键
- 性能优化可以在不影响功能的前提下减少不必要的计算
这些修改显著提升了Kometa项目中正则表达式过滤的准确性和效率,为用户提供了更可靠的媒体库管理体验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00