ONNXMLTools 1.14.0版本发布:增强LightGBM支持与代码优化
ONNXMLTools是一个用于将机器学习模型转换为ONNX格式的开源工具库。ONNX(Open Neural Network Exchange)是一种开放的模型表示格式,允许开发者在不同框架之间转换和部署模型。ONNXMLTools作为ONNX生态系统的重要组成部分,为多种机器学习框架提供了模型转换能力。
最新发布的1.14.0版本带来了多项重要改进,主要集中在LightGBM模型的支持增强和代码优化方面。这些改进不仅扩展了工具的功能范围,也提升了代码的健壮性和可维护性。
LightGBM目标函数支持扩展
本次更新显著增强了LightGBM模型转换器的功能,新增了对两种重要目标函数的支持:
-
特殊分布目标函数:这类分布是统计学中一类特殊的概率分布,特别适用于处理具有大量零值和连续正值的复合型数据。在保险精算和风险建模领域,这类回归被广泛用于预测索赔金额。现在,开发者可以直接将使用这类目标函数训练的LightGBM模型转换为ONNX格式,无需进行复杂的后处理。
-
Huber目标函数:Huber损失函数是回归问题中常用的鲁棒损失函数,它结合了均方误差和绝对误差的优点,对异常值具有更强的鲁棒性。这一增强使得使用Huber损失进行训练的LightGBM回归模型能够无缝转换为ONNX格式,保持了模型的原始特性。
这些新增支持使得ONNXMLTools能够覆盖更广泛的LightGBM使用场景,特别是在需要处理非标准数据分布或存在异常值的情况下。
代码优化与清理
1.14.0版本还对代码库进行了多项优化:
-
移除冗余函数:清理了不再使用的
split_complex_to_pairs
函数及相关辅助函数,简化了代码结构,减少了潜在的维护负担。 -
依赖关系简化:移除了对onnxconverter-common的依赖。这一变化使得项目的依赖关系更加清晰,降低了潜在依赖冲突的风险,同时也可能带来更小的安装包体积和更快的安装速度。
技术影响与建议
对于使用LightGBM进行机器学习开发的团队,1.14.0版本提供了更完整的模型转换支持。特别是在以下场景中,新版本将带来直接价值:
- 保险行业中的索赔预测模型(利用特殊分布目标函数)
- 金融风控中的异常值敏感场景(利用Huber目标函数)
- 需要简化部署依赖的项目(得益于依赖关系优化)
建议现有用户评估升级,特别是那些需要使用上述特定目标函数的项目。升级过程通常只需更新pip包即可,但建议在开发环境中先行测试,确保与现有工作流的兼容性。
ONNXMLTools持续演进的方向表明,项目团队不仅关注新增功能的开发,也同样重视代码质量和长期可维护性,这对于依赖该工具的生产系统来说是一个积极的信号。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0320- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









