AWS Deep Learning Containers发布PyTorch 2.2.0推理镜像
2025-07-07 22:18:30作者:柯茵沙
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像集合,这些镜像经过优化,可在AWS云环境中高效运行。DLC镜像包含了主流深度学习框架及其依赖项,用户无需自行配置环境即可快速部署深度学习应用。
近日,AWS DLC项目发布了针对PyTorch 2.2.0框架的推理专用容器镜像更新。这些新镜像基于Ubuntu 20.04操作系统构建,支持Python 3.10环境,为开发者提供了开箱即用的PyTorch推理环境。
镜像版本概览
本次发布的镜像分为CPU和GPU两个版本:
-
CPU版本:基于PyTorch 2.2.0 CPU版本构建,适用于不需要GPU加速的推理场景。镜像中包含了PyTorch核心库(2.2.0)、TorchVision(0.17.0)、TorchAudio(2.2.0)等关键组件,以及模型服务工具TorchServe(0.11.0)和模型归档工具Torch Model Archiver(0.11.0)。
-
GPU版本:基于PyTorch 2.2.0 CUDA 11.8版本构建,针对NVIDIA GPU进行了优化。除了包含CPU版本的所有组件外,还集成了CUDA 11.8工具链和cuDNN库,能够充分利用GPU的并行计算能力加速模型推理。
关键技术组件
两个版本的镜像都预装了丰富的Python库和系统工具:
- 核心科学计算库:NumPy(1.26.4)、SciPy(1.13.0)、Pandas(2.2.2,仅GPU版本)等,为数据处理和科学计算提供支持。
- 图像处理工具:OpenCV-Python(4.9.0.80)和Pillow(10.3.0),方便计算机视觉应用的开发。
- AWS工具链:AWS CLI(1.32.108)、Boto3(1.34.108)等,便于与AWS云服务集成。
- 开发工具:包括Cython(3.0.10)、Ninja(1.11.1.1)等构建工具,以及Emacs等编辑器。
适用场景
这些预构建的PyTorch推理镜像特别适合以下场景:
- 模型服务化部署:借助内置的TorchServe工具,开发者可以快速将训练好的PyTorch模型部署为可扩展的Web服务。
- 云端推理加速:GPU版本镜像针对AWS EC2实例中的NVIDIA GPU进行了优化,能够最大化推理性能。
- 开发环境标准化:统一的容器环境消除了"在我机器上能运行"的问题,确保开发、测试和生产环境的一致性。
技术优势
使用这些官方镜像相比自行构建环境有几个显著优势:
- 性能优化:镜像针对AWS基础设施进行了专门优化,包括计算、网络和存储性能调优。
- 安全性:定期更新基础镜像和安全补丁,减少潜在漏洞。
- 易用性:开箱即用的配置减少了环境搭建时间,让开发者可以专注于模型开发和业务逻辑。
- 版本管理:清晰的版本标签体系便于环境管理和回滚。
对于需要在AWS云上部署PyTorch推理服务的团队,这些官方维护的DLC镜像提供了可靠、高效且易于管理的解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Launch4j中文版:Java应用程序打包成EXE的终极解决方案
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
暂无简介
Dart
654
149
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
641
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
仓颉编译器源码及 cjdb 调试工具。
C++
130
864
React Native鸿蒙化仓库
JavaScript
251
320
仓颉编程语言测试用例。
Cangjie
37
857