Locust压力测试平台中的阶梯式用户增长与数据统计方案
2025-05-07 00:23:34作者:郁楠烈Hubert
概述
在使用Locust构建压力测试平台时,阶梯式用户增长测试是一个常见需求。开发者希望通过逐步增加并发用户数(如1000、2000、3000等)来观察系统在不同负载下的表现。然而,Locust默认的统计数据统计方式是从测试开始到当前时刻的平均值,这给需要分析每个阶梯阶段独立性能数据的用户带来了困扰。
问题背景
在典型的阶梯式压力测试场景中,测试人员通常会:
- 使用
StagesShape
类实现用户数的阶梯增长 - 在每个用户数阶梯稳定后下载CSV报告
- 期望获得当前阶梯阶段的独立性能数据
但Locust默认的CSV报告会累计从测试开始到当前的所有数据,无法单独反映某个阶梯阶段的性能表现。
解决方案探索
使用--reset-stats参数
Locust提供了--reset-stats
命令行参数,该参数的作用是:
- 在用户数完成增长后重置统计数据
- 确保后续统计数据仅反映当前阶梯阶段的性能
- 需要同时在master和worker节点上设置(分布式模式下)
使用方式示例:
locust -f locustfile.py --reset-stats
方案局限性
虽然--reset-stats
解决了CSV报告的问题,但会带来新的挑战:
- HTML报告仅包含最后阶梯阶段的数据
- 历史阶梯数据会被清除
- 无法在单一测试运行中保留完整的阶梯性能数据
进阶解决方案建议
对于需要完整保留各阶梯数据的场景,建议考虑以下方案:
方案一:分多次独立测试
- 为每个用户数阶梯创建独立的测试任务
- 分别运行Locust并收集报告
- 通过外部工具整合分析多份报告数据
优点:
- 数据清晰独立
- 报告完整
- 实现简单
缺点:
- 需要多次启动测试
- 测试环境可能不完全一致
方案二:自定义数据收集
- 继承Locust的统计模块
- 在每个阶梯阶段手动记录关键指标
- 输出自定义格式的报告
实现要点:
- 利用Locust的event hook机制
- 在用户数变化时触发数据记录
- 存储到独立的数据结构中
方案三:平台集成优化
对于已经集成Locust的测试平台:
- 在平台层面实现数据切片功能
- 根据时间戳或用户数变化点分割数据
- 生成阶段性的性能报告
最佳实践
- 明确测试目标:如果只需要最终性能数据,使用
--reset-stats
即可 - 对于需要详细分析各阶梯的场景,建议采用分次测试方案
- 在自动化测试平台中,可结合平台能力实现更灵活的数据收集和分析
总结
Locust作为一款优秀的压力测试工具,在阶梯式测试场景中需要根据实际需求选择合适的统计方案。--reset-stats
参数解决了阶段数据独立统计的问题,但也带来了报告完整性的挑战。测试团队应根据自身需求评估各种方案的优缺点,选择最适合的实施方案。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
986
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
45
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44