Crawlee-Python 中处理链式请求的技术解析
2025-06-07 02:00:18作者:曹令琨Iris
在网页抓取过程中,经常会遇到需要按顺序执行多个请求才能获取目标数据的情况,特别是在使用 ASP.Net 开发的网站中。本文将深入探讨如何使用 Crawlee-Python 框架高效处理这类链式请求场景。
链式请求的典型场景
许多现代网站,特别是基于 ASP.Net 开发的应用程序,会采用多步骤请求机制来获取完整数据。常见场景包括:
- 先发送一个初始化请求获取会话令牌
- 使用该令牌发起第二个请求获取数据标识符
- 最后使用标识符获取实际的目标数据
这种设计模式增加了网页抓取的复杂度,因为每个请求都依赖于前一个请求的结果。
Crawlee 的解决方案
Crawlee 提供了优雅的解决方案来处理这种链式请求。核心方法是使用 send_request 辅助函数,它允许在当前页面上下文中发起额外的 HTTP 请求。
基本实现方式
在请求处理器中,可以直接调用 send_request 方法发起后续请求:
@crawler.router.default_handler
async def handler(context: BeautifulSoupCrawlingContext) -> None:
# 发起第一个后续请求
response1 = await context.send_request(url="/api/init", method="post")
# 处理第一个响应
token = json.loads(response1.read())['token']
# 使用第一个响应的结果发起第二个请求
response2 = await context.send_request(
url=f"/api/data?token={token}",
method="get"
)
# 处理最终数据
final_data = json.loads(response2.read())
上下文类型的选择
Crawlee 提供了多种上下文类型,都可以使用 send_request 方法:
- BeautifulSoupCrawlingContext:适用于 HTML 解析场景
- BasicCrawlingContext:基础上下文,同样支持链式请求
开发者可以根据实际需求选择合适的上下文类型。值得注意的是,send_request 返回的是新请求的响应对象,与原始请求的响应(可通过 context.http_response 访问)是分开的。
最佳实践建议
- 错误处理:为每个链式请求添加适当的错误处理,确保某个请求失败时能够优雅降级或重试
- 请求间隔:在密集的链式请求之间添加适当延迟,避免触发反爬机制
- 会话保持:Crawlee 会自动维护会话状态,确保相关 cookies 在链式请求中保持
- 结果缓存:对于频繁使用的中间结果,考虑使用 Crawlee 的缓存机制提高效率
总结
Crawlee-Python 通过 send_request 方法提供了处理链式请求的简洁方案,使开发者能够轻松应对复杂的多步骤数据获取场景。无论是简单的两步验证,还是复杂的多步数据获取流程,都可以通过这种方法高效实现。理解这一机制将大大提升开发者处理现代网站抓取任务的能力。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
264
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.34 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1