Crawlee-Python 中处理链式请求的技术解析
2025-06-07 04:05:14作者:曹令琨Iris
在网页抓取过程中,经常会遇到需要按顺序执行多个请求才能获取目标数据的情况,特别是在使用 ASP.Net 开发的网站中。本文将深入探讨如何使用 Crawlee-Python 框架高效处理这类链式请求场景。
链式请求的典型场景
许多现代网站,特别是基于 ASP.Net 开发的应用程序,会采用多步骤请求机制来获取完整数据。常见场景包括:
- 先发送一个初始化请求获取会话令牌
 - 使用该令牌发起第二个请求获取数据标识符
 - 最后使用标识符获取实际的目标数据
 
这种设计模式增加了网页抓取的复杂度,因为每个请求都依赖于前一个请求的结果。
Crawlee 的解决方案
Crawlee 提供了优雅的解决方案来处理这种链式请求。核心方法是使用 send_request 辅助函数,它允许在当前页面上下文中发起额外的 HTTP 请求。
基本实现方式
在请求处理器中,可以直接调用 send_request 方法发起后续请求:
@crawler.router.default_handler
async def handler(context: BeautifulSoupCrawlingContext) -> None:
    # 发起第一个后续请求
    response1 = await context.send_request(url="/api/init", method="post")
    
    # 处理第一个响应
    token = json.loads(response1.read())['token']
    
    # 使用第一个响应的结果发起第二个请求
    response2 = await context.send_request(
        url=f"/api/data?token={token}",
        method="get"
    )
    
    # 处理最终数据
    final_data = json.loads(response2.read())
上下文类型的选择
Crawlee 提供了多种上下文类型,都可以使用 send_request 方法:
- BeautifulSoupCrawlingContext:适用于 HTML 解析场景
 - BasicCrawlingContext:基础上下文,同样支持链式请求
 
开发者可以根据实际需求选择合适的上下文类型。值得注意的是,send_request 返回的是新请求的响应对象,与原始请求的响应(可通过 context.http_response 访问)是分开的。
最佳实践建议
- 错误处理:为每个链式请求添加适当的错误处理,确保某个请求失败时能够优雅降级或重试
 - 请求间隔:在密集的链式请求之间添加适当延迟,避免触发反爬机制
 - 会话保持:Crawlee 会自动维护会话状态,确保相关 cookies 在链式请求中保持
 - 结果缓存:对于频繁使用的中间结果,考虑使用 Crawlee 的缓存机制提高效率
 
总结
Crawlee-Python 通过 send_request 方法提供了处理链式请求的简洁方案,使开发者能够轻松应对复杂的多步骤数据获取场景。无论是简单的两步验证,还是复杂的多步数据获取流程,都可以通过这种方法高效实现。理解这一机制将大大提升开发者处理现代网站抓取任务的能力。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
最新内容推荐
 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
104
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
598
158
暂无简介
Dart
566
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
249
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
101
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446