探索实时渲染的未来:DONeRF深度预言网络
2024-05-21 05:09:03作者:秋泉律Samson

项目介绍
DONeRF(Depth Oracle Networks for Efficient Real-Time Rendering)是一个创新的开源项目,旨在实现紧凑型神经辐射场的实时渲染。利用深度预言网络,该项目克服了传统神经辐射场(NeRF)计算成本高的问题,为游戏和虚拟现实应用开启了新的可能性。
该代码库基于nerf和nerf-pytorch,并融入了FLIP和IW-SSIM等先进技术,支持高度定制化的训练和测试环境。
项目技术分析
DONeRF的核心是深度预言网络,它首先训练一个深度估计器,随后利用这些估计来指导光线投射过程,显著减少了所需的样本数量。这种方法使得在保持高质量图像渲染的同时,大大降低了计算复杂度。
项目中的训练和测试脚本提供了灵活的配置选项,如GPU设备选择、数据存储方式以及训练迭代次数。此外,代码已经过Ubuntu 20.04和RTX2080TI显卡的验证,兼容其他操作系统和硬件。
项目及技术应用场景
- 实时渲染:在游戏和虚拟现实环境中,DONeRF可以提供流畅且高保真的场景体验。
- 交互式设计:设计师可以快速预览模型在不同光照条件下的表现,加速创作流程。
- 计算机视觉研究:作为高效的神经表示工具,DONeRF可以用于研究如何优化三维重建和场景理解算法。
项目特点
- 高效渲染: 通过深度预言网络,大幅减少光线投射的样本数,实现了接近实时的渲染速度。
- 紧凑模型:存储场景信息的神经网络结构紧凑,降低了内存占用。
- 灵活性:与多种现有框架兼容,可方便地集成到现有的项目中。
- 易于使用:详细文档和示例命令,让初学者也能轻松上手。
如果你想探索神经辐射场技术的新边界,或寻找一种能提升实时渲染性能的方法,DONeRF无疑是值得尝试的选择。立即访问项目主页,查看论文,并开始你的实时渲染之旅吧!
最后,如果你使用或修改了DONeRF,请在相关研究中引用他们的工作:
@article{neff2021donerf,
author = {Neff, T. and Stadlbauer, P. and Parger, M. and Kurz, A. and Mueller, J. H. and Chaitanya, C. R. A. and Kaplanyan, A. and Steinberger, M.},
title = {DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks},
journal = {Computer Graphics Forum},
volume = {40},
number = {4},
pages = {45-59},
keywords = {CCS Concepts, • Computing methodologies → Rendering},
doi = {https://doi.org/10.1111/cgf.14340},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14340},
eprint = {https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14340},
abstract = {Abstract The recent research explosion around implicit neural representations, such as NeRF, shows that there is immense potential for implicitly storing high-quality scene and lighting information in compact neural networks. However, one major limitation preventing the use of NeRF in real-time rendering applications is the prohibitive computational cost of excessive network evaluations along each view ray, requiring dozens of petaFLOPS. In this work, we bring compact neural representations closer to practical rendering of synthetic content in real-time applications, such as games and virtual reality. We show that the number of samples requir}
}
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
458
3.42 K
暂无简介
Dart
710
170
Ascend Extension for PyTorch
Python
265
299
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
182
67
React Native鸿蒙化仓库
JavaScript
284
332
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
838
415
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
431
130
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
103
118