Longhorn项目中孤儿副本自动删除机制的演进与测试修复
2025-06-01 11:55:00作者:咎岭娴Homer
背景介绍
Longhorn作为一款云原生分布式块存储系统,其数据可靠性是核心特性之一。在Longhorn的架构设计中,副本管理是确保数据高可用的关键组件。当副本出现异常时,系统会生成孤儿副本(Orphan)以保证数据安全。随着版本迭代,Longhorn对孤儿副本的处理机制也在不断优化。
问题发现
在Longhorn master分支的测试过程中,发现test_orphan_auto_deletion测试用例出现失败。该测试用例原本用于验证以下功能流程:
- 创建新磁盘用于存放孤儿副本目录
- 创建卷并附加到当前节点
- 通过复制活动副本目录创建孤儿副本目录
- 清理卷
- 验证孤儿列表中包含副本目录对应的孤儿CR
- 启用孤儿自动删除设置
- 验证孤儿列表为空且后台已删除孤儿目录
- 清理磁盘
测试失败的关键点在于:当启用"Orphan Auto-Deletion"设置后,系统未能如预期自动删除孤儿数据,导致断言失败。
技术分析
深入分析后发现,这实际上是Longhorn v1.9.0版本引入的一项预期行为变更:
- 从v1.9.0开始,Longhorn引入了新的
orphan-resource-auto-deletion设置,替代了原有的orphan-auto-deletion机制 - 新机制采用了更精细化的控制策略,特别是针对副本数据(replicaData)的处理
- 旧设置被标记为"Deprecated"(已弃用),但仍保留在UI中以兼容旧版本
- 系统升级时,会将旧设置的值迁移到新设置中,之后旧设置变为只读状态
- 新设置会单向同步旧设置的
replicaData标志位
解决方案
针对这一变更,测试团队采取了以下修复措施:
- 更新测试用例,使用新的
orphan-resource-auto-deletion设置替代旧的orphan-auto-deletion - 确保测试逻辑符合新版本的设计预期
- 验证新设置能够正确触发孤儿数据的自动删除
验证结果
修复后的测试在以下版本中验证通过:
- master-head分支(longhorn-tests e8df155)
- v1.9.x-head分支(longhorn-tests 43e857b)
测试结果表明,新的孤儿资源自动删除机制工作正常,能够按预期自动清理孤儿副本数据。
技术启示
这一变更反映了Longhorn在架构演进过程中的几个重要考量:
- 配置精细化:新机制提供了更细粒度的控制选项,特别是针对不同类型资源(如副本数据)的单独控制
- 平滑升级:保留旧设置并实现配置迁移,确保用户升级体验的无缝衔接
- 显式弃用:通过UI明确标记已弃用功能,引导用户使用新机制
- 测试保障:通过自动化测试及时发现问题,确保功能变更的质量
对于Longhorn用户而言,建议在新版本中使用orphan-resource-auto-deletion设置来管理孤儿资源的自动清理,以获得最佳的功能体验和未来的兼容性保障。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134