在Darts时间序列库中实现移动平均作为未来协变量的挑战与解决方案
概述
在时间序列预测中,移动平均是一种常用的特征工程技术,它可以帮助模型捕捉数据的趋势和模式。然而,当我们需要将移动平均特征作为未来协变量使用时,特别是在多步预测场景中,会面临一些技术挑战。本文将探讨在使用Darts时间序列库时,如何有效地实现这一需求。
移动平均作为协变量的技术挑战
将移动平均作为未来协变量使用时,主要面临两个核心问题:
-
自回归预测中的依赖性问题:在多步预测中,后续预测值依赖于前面的预测结果。如果我们使用基于目标变量的移动平均作为协变量,就会形成循环依赖。
-
Darts库的编码器限制:Darts的编码器机制设计上只能访问时间索引信息,而无法直接操作序列值本身。这使得无法直接通过内置编码器实现基于值的移动平均计算。
解决方案探索
手动实现方法
最直接的解决方案是手动实现预测循环,并在每一步更新移动平均协变量:
# 预测步数
forecast_horizon = 10
# 原始值(不含移动平均)
raw_values = ts.values()
# 预先生成时间索引
extended_time_index = pd.date_range(start=ts.start_time(),
periods=len(ts)+forecast_horizon,
freq=ts.freq)
# 计算初始移动平均
new_values = np.convolve(raw_values.flatten(), np.ones(3), 'valid')
training_ts = TimeSeries.from_times_and_values(
times=extended_time_index[:len(new_values)],
values=new_values
)
# 迭代预测
for i in range(forecast_horizon):
# 单步预测
prediction = model.predict(n=1, series=training_ts)
# 更新原始值数组
raw_values = np.vstack([raw_values, prediction.values()])
# 重新计算移动平均
new_values = np.convolve(raw_values.flatten(), np.ones(3), 'valid')
# 创建新的时间序列对象
training_ts = TimeSeries.from_times_and_values(
times=extended_time_index[:len(new_values)],
values=new_values
)
# 合并其他协变量(如有)
training_ts = training_ts.concatenate(future_covariates, axis=1)
这种方法的优势在于完全控制了预测流程,可以灵活地实现各种自定义逻辑。但需要注意确保时间索引的正确对齐。
技术细节考量
-
窗口大小选择:移动平均窗口大小需要根据数据特性谨慎选择,过小可能导致噪声过大,过大则可能平滑掉重要模式。
-
边界处理:在预测初期,可能没有足够的历史数据计算移动平均,需要考虑填充策略。
-
计算效率:对于长序列或多变量场景,手动循环可能影响性能,需要考虑向量化实现。
替代方案评估
虽然Darts目前不直接支持这种动态协变量生成,但可以考虑以下替代方案:
-
静态移动平均特征:使用历史数据的移动平均作为静态协变量,虽然无法反映预测期的变化,但在某些场景下仍可能有效。
-
模型内置机制:某些模型(如RNN、Transformer)本身具有捕捉序列依赖的能力,可能不需要显式的移动平均特征。
-
自定义模型:对于复杂需求,可以考虑扩展Darts模型类,实现自定义的协变量处理逻辑。
最佳实践建议
-
数据探索:在实现前,先分析移动平均特征与目标变量的相关性,确保其预测价值。
-
逐步验证:从简单实现开始,逐步增加复杂性,每步验证效果。
-
性能监控:注意跟踪实现的计算开销,特别是对于大规模数据。
-
结果对比:与不使用移动平均协变量的基准模型进行比较,评估实际增益。
结论
在Darts中实现移动平均作为未来协变量虽然需要额外的工作量,但通过手动控制预测循环是完全可行的。这种方法为时间序列预测提供了更大的灵活性,使数据科学家能够充分利用领域知识构建更强大的预测模型。随着对Darts库的深入理解,开发者可以探索更多创新的特征工程方法,提升预测性能。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00