SEM-PCYC: 基于PyTorch的零样本草图图像检索实现教程
2024-09-25 15:16:44作者:庞眉杨Will
项目介绍
SEM-PCYC 是一个基于 PyTorch 的实现项目,旨在解决零样本草图基图像检索的问题。该技术通过“语义绑定的配对循环一致性”来实现,这是Anjan Dutta和Zeynep Akata在CVPR 2019上发表的研究成果。它设计用于跨模态检索场景,特别强调从手绘草图中准确查找对应的真实世界图像,无需事先看到具体的实例。
项目快速启动
环境准备
确保您的系统满足以下条件:
- 操作系统:Linux(测试环境为Ubuntu 16.04)
- 硬件要求:NVIDIA GPU + 安装CUDA和CuDNN
- 软件依赖:Python 3, PyTorch,以及其他库(见
requirements.txt)
首先,安装必要的工具:
sudo apt-get install p7zip-full
然后,克隆项目仓库并安装依赖项:
git clone https://github.com/AnjanDutta/sem-pcyc.git
cd sem-pcyc
pip3 install -r requirements.txt
配置与数据下载
编辑config.ini配置文件以指定数据集存储路径和其他设置。接下来,下载所需的草图与图像数据集:
bash download_datasets.sh
以及预训练模型:
bash download_models.sh
运行示例
进行测试以验证安装是否成功:
python3 src/test.py --dataset Sketchy_extended --dim-out 64 --semantic-models hieremb-jcn word2vec-google-news
对于训练新的模型,可以调整参数执行:
python3 src/train.py --dataset Sketchy_extended --dim-out 64 --semantic-models word2vec-google-news --epochs 1000 --early-stop 200 --lr 0.0001
应用案例与最佳实践
SEM-PCYC的主要应用场景是在没有特定实例图片的前提下,仅凭草图就能搜索到相应类别的真实图片。最佳实践包括:
- 在实际产品中集成,如增强图像搜索引擎的手绘输入支持。
- 研究领域内的进一步实验,探索模型的泛化能力和鲁棒性。
- 结合其他图像处理技术,提高识别精度或扩展到多模态检索任务。
典型生态项目
虽然直接相关的典型生态项目未具体提及,但类似的跨模态检索研究和应用,如基于文本的图像检索、语音到图像转换等,都可视为该技术的生态扩展。开发者可根据SEM-PCYC的基础,探索与计算机视觉、自然语言处理结合的新应用,推动AI在多模态交互领域的进步。
本教程提供了一个关于如何开始使用SEM-PCYC项目的快速指南,帮助您迅速理解和运行这个强大的零样本学习解决方案。请根据自己的具体需求调整配置,并探索该项目的潜力。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210