SEM-PCYC: 基于PyTorch的零样本草图图像检索实现教程
2024-09-25 12:30:43作者:庞眉杨Will
项目介绍
SEM-PCYC 是一个基于 PyTorch 的实现项目,旨在解决零样本草图基图像检索的问题。该技术通过“语义绑定的配对循环一致性”来实现,这是Anjan Dutta和Zeynep Akata在CVPR 2019上发表的研究成果。它设计用于跨模态检索场景,特别强调从手绘草图中准确查找对应的真实世界图像,无需事先看到具体的实例。
项目快速启动
环境准备
确保您的系统满足以下条件:
- 操作系统:Linux(测试环境为Ubuntu 16.04)
- 硬件要求:NVIDIA GPU + 安装CUDA和CuDNN
- 软件依赖:Python 3, PyTorch,以及其他库(见
requirements.txt
)
首先,安装必要的工具:
sudo apt-get install p7zip-full
然后,克隆项目仓库并安装依赖项:
git clone https://github.com/AnjanDutta/sem-pcyc.git
cd sem-pcyc
pip3 install -r requirements.txt
配置与数据下载
编辑config.ini
配置文件以指定数据集存储路径和其他设置。接下来,下载所需的草图与图像数据集:
bash download_datasets.sh
以及预训练模型:
bash download_models.sh
运行示例
进行测试以验证安装是否成功:
python3 src/test.py --dataset Sketchy_extended --dim-out 64 --semantic-models hieremb-jcn word2vec-google-news
对于训练新的模型,可以调整参数执行:
python3 src/train.py --dataset Sketchy_extended --dim-out 64 --semantic-models word2vec-google-news --epochs 1000 --early-stop 200 --lr 0.0001
应用案例与最佳实践
SEM-PCYC的主要应用场景是在没有特定实例图片的前提下,仅凭草图就能搜索到相应类别的真实图片。最佳实践包括:
- 在实际产品中集成,如增强图像搜索引擎的手绘输入支持。
- 研究领域内的进一步实验,探索模型的泛化能力和鲁棒性。
- 结合其他图像处理技术,提高识别精度或扩展到多模态检索任务。
典型生态项目
虽然直接相关的典型生态项目未具体提及,但类似的跨模态检索研究和应用,如基于文本的图像检索、语音到图像转换等,都可视为该技术的生态扩展。开发者可根据SEM-PCYC的基础,探索与计算机视觉、自然语言处理结合的新应用,推动AI在多模态交互领域的进步。
本教程提供了一个关于如何开始使用SEM-PCYC项目的快速指南,帮助您迅速理解和运行这个强大的零样本学习解决方案。请根据自己的具体需求调整配置,并探索该项目的潜力。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K