Vanilla Extract在Turborepo+Next.js14项目中的配置问题解析
问题背景
在基于Turborepo的monorepo项目中,开发者尝试使用Vanilla Extract构建的设计系统(@repo/ui)时遇到了构建错误。错误表现为Next.js应用无法正确处理Vanilla Extract生成的CSS文件,控制台显示vanilla.virtual.css
文件存在语法错误。
错误现象
当在Next.js 14应用中导入设计系统的组件时,控制台报错如下:
Syntax error: ...\vanilla.virtual.css Unknown word
23 | }
24 | options => {
> 25 | var className = config.defaultClassName;
| ^
根本原因分析
经过排查,发现该问题主要由两个配置问题导致:
-
Next.js配置错误:原始的
next.config.js
文件中,transpilePackages
配置被错误放置,导致Next.js无法正确转译monorepo中的设计系统包。 -
插件顺序问题:Vanilla Extract插件需要正确包裹Next.js配置才能生效,但原始配置中插件应用方式不正确。
解决方案
正确的Next.js配置
修正后的next.config.js
应采用以下结构:
const { createVanillaExtractPlugin } = require('@vanilla-extract/next-plugin');
const withVanillaExtract = createVanillaExtractPlugin();
/** @type {import('next').NextConfig} */
const nextConfig = {
transpilePackages: ['@repo/ui'],
// 其他Next.js配置...
};
module.exports = withVanillaExtract(nextConfig);
关键配置要点
-
transpilePackages:必须明确列出需要转译的monorepo包名,确保Next.js能正确处理这些包中的代码。
-
插件包裹顺序:Vanilla Extract插件必须包裹最终的Next.js配置对象,这样才能确保CSS处理流程正确。
-
依赖版本对齐:确保项目中使用的Vanilla Extract相关插件版本一致,避免因版本不匹配导致的问题。
最佳实践建议
-
monorepo项目结构:在Turborepo项目中,建议将设计系统作为一个独立工作区(workspace)管理。
-
依赖管理:使用pnpm workspace协议(
workspace:*
)确保各包依赖版本一致。 -
构建缓存:利用Turborepo的缓存机制加速构建过程。
-
类型安全:通过TypeScript项目引用(project references)确保类型定义正确传递。
总结
在monorepo架构下使用Vanilla Extract需要特别注意构建工具的配置。通过正确配置Next.js的转译选项和插件顺序,可以解决大多数集成问题。对于复杂项目,建议逐步验证各环节配置,确保设计系统的样式能够正确编译和应用到主应用中。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









