Vanilla Extract在Turborepo+Next.js14项目中的配置问题解析
问题背景
在基于Turborepo的monorepo项目中,开发者尝试使用Vanilla Extract构建的设计系统(@repo/ui)时遇到了构建错误。错误表现为Next.js应用无法正确处理Vanilla Extract生成的CSS文件,控制台显示vanilla.virtual.css
文件存在语法错误。
错误现象
当在Next.js 14应用中导入设计系统的组件时,控制台报错如下:
Syntax error: ...\vanilla.virtual.css Unknown word
23 | }
24 | options => {
> 25 | var className = config.defaultClassName;
| ^
根本原因分析
经过排查,发现该问题主要由两个配置问题导致:
-
Next.js配置错误:原始的
next.config.js
文件中,transpilePackages
配置被错误放置,导致Next.js无法正确转译monorepo中的设计系统包。 -
插件顺序问题:Vanilla Extract插件需要正确包裹Next.js配置才能生效,但原始配置中插件应用方式不正确。
解决方案
正确的Next.js配置
修正后的next.config.js
应采用以下结构:
const { createVanillaExtractPlugin } = require('@vanilla-extract/next-plugin');
const withVanillaExtract = createVanillaExtractPlugin();
/** @type {import('next').NextConfig} */
const nextConfig = {
transpilePackages: ['@repo/ui'],
// 其他Next.js配置...
};
module.exports = withVanillaExtract(nextConfig);
关键配置要点
-
transpilePackages:必须明确列出需要转译的monorepo包名,确保Next.js能正确处理这些包中的代码。
-
插件包裹顺序:Vanilla Extract插件必须包裹最终的Next.js配置对象,这样才能确保CSS处理流程正确。
-
依赖版本对齐:确保项目中使用的Vanilla Extract相关插件版本一致,避免因版本不匹配导致的问题。
最佳实践建议
-
monorepo项目结构:在Turborepo项目中,建议将设计系统作为一个独立工作区(workspace)管理。
-
依赖管理:使用pnpm workspace协议(
workspace:*
)确保各包依赖版本一致。 -
构建缓存:利用Turborepo的缓存机制加速构建过程。
-
类型安全:通过TypeScript项目引用(project references)确保类型定义正确传递。
总结
在monorepo架构下使用Vanilla Extract需要特别注意构建工具的配置。通过正确配置Next.js的转译选项和插件顺序,可以解决大多数集成问题。对于复杂项目,建议逐步验证各环节配置,确保设计系统的样式能够正确编译和应用到主应用中。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









